Non-isothermal crystallization kinetics of polyethylene–clay nanocomposites prepared by high-energy ball milling
Maryam Abareshi Seyed Mojtaba Zebarjad Elaheh K Goharshadi
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/037/05/1113-1121
Non-isothermal crystallization kinetics of pure medium density polyethylene (MDPE) and MDPE–clay nanocomposites have been investigated by differential scanning calorimeter. The modified Avrami, Ozawa, Liu and Ziabicki equations have been applied to describe non-isothermal crystallization process. The results of Avrami analysis showed a very complicated crystallization mechanism. Although, Ozawa equation failed to provide an adequate description for non-isothermal crystallization process, Liu equation could describe it well. The data showed the crystallization rate of MDPE and nanocomposites raises with increasing cooling rate and the crystallization rate of nanocomposite is faster than that of MDPE at a given cooling rate. Ziabicki’s kinetic crystallizability index showed that clay can increase the ability of MDPE to crystallize, when it is cooled at unit cooling rate. The activation energy of samples has been evaluated by Kissinger method. The results showed that the activation energy of nanocomposite was lower than that of MDPE.
Maryam Abareshi1 Seyed Mojtaba Zebarjad2 Elaheh K Goharshadi3 4
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.