• Structural evolution, electrical and optical properties of AZO films deposited by sputtering ultra-high density target

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      AZO film; ultra-high density; ceramic target; nanopowders; evolution.

    • Abstract


      Aluminum-doped zinc oxide (AZO) target was fabricated using AZO nanopowders synthesized by co-precipitation method and then the AZO films with different thicknesses were deposited on glass by d.c. magnetron sputtering at room temperature. AZO target is nodules free and shows homogeneous microstructure, ultra-high density and low resistivity. ZnAl2O4 phase appears in AZO target and disappears in AZO films. All AZO films show c-axis preferred orientation and hexagonal structure. With increasing film thickness from 153 to 1404 nm, the crystallinity was improved and the angle of (002) peak was close to 34.45°. The increase in grain size and surface roughness is due to the increase in film thickness. The decrease of resistivity is ascribed to the increases of carrier concentration and Hall mobility. The lowest resistivity is 9.6 × 10-4 𝛺.cm. The average transmittance of AZO films exceeds 80%, and a sharp fundamental absorption edge with red-shifting is observed in the visible range. The bandgap decreases from 3.26 to 3.02 eV.

    • Author Affiliations


      Jiwen Xu1 2 Zupei Yang1 Hua Wang2 Xiaowen Zhang2

      1. School of Material Science and Engineering, Shaanxi Normal University, Xi’an 710062, China
      2. School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.