• Structural, optical and photoluminescence study of nanocrystalline SnO2 thin films deposited by spray pyrolysis

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      SnO2; thin films; X-ray diffraction; optical transmission; photoluminescence study.

    • Abstract


      Undoped SnO2 thin films prepared by spray pyrolysis method reveal polycrystalline nature with prominent peaks along (110), (101) and (211) planes. All the films are nanocrystalline with particle size lying in the range of 3.14–8.6 nm calculated by DS formula. Orientation along plane (200) decreases continuously as molar concentration of SnO2 increases. Dislocation density along plane (110) also decreases as molar concentration increases except 0.4 M SnO2 thin film. Scanning electron microscopy image of the films contain jelly structures along with agglomerated clusters of particles. SnO2 synthesized successfully, which confirms by Fourier transform infra-red spectroscopy. The optical transmittance spectra of 0.2 M SnO2 thin film shows transmittance about 50–60% transmission in visible and near infrared region with a sharp cut off in the ultraviolet region. The transmission decreases in visible and near infrared region as molar concentration increases. Broad UV emission at 398 nm is observed in photoluminescence spectra of the films along with a blue emission, when excited at 250 nm wavelength. Emission intensity randomly changed as SnO2 molar concentration increases. When excited at 320 nm, one UV and two visible peaks appeared at 385, 460 and 485 nm, respectively.

    • Author Affiliations


      Akhilesh Tripathi1 R K Shukla1

      1. Department of Physics, University of Lucknow, Lucknow 226 007, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.