• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/037/01/0077-0082

    • Keywords

       

      Hydrogen storage; Mg-based materials; hydrogen storage performance; catalyst.

    • Abstract

       

      Two kinds of novel materials, Mg–1.6 mol% Ni–0.4 mol% NiO–2 mol% MCl (MCl = NbCl5, CrCl3), along with Mg–1.6 mol% Ni–0.4 mol% NiO for comparison, were examined for their potential use in hydrogen storage applications, having been fabricated via cryomilling. The effects of NbCl5 and CrCl3 on hydrogen storage performance were investigated. A microstructure analysis showed that besides the main Mg and Ni phases, NiO and Mg2Ni phases were present in all samples. MgCl2 was only found in halide-doped samples and NbO was only found in NbCl5-doped samples after ball milling. The particle size decreased significantly after 7 h of cryomilling. MgH2, Mg2NiH4 and Mg2NiH0.3 were present in all the samples, while NbH2 was only observed in the NbCl5 -doped sample after absorption. The NbCl5-containing composite exhibited a low onset absorption temperature of 323 K, which was 10 K lower than that of the no-halide doped catalyst. It absorbed 5.32 wt% of hydrogen in 370 s at 623 K under 4 MPa hydrogen pressure and can absorb 90% of its full hydrogen capacity in 50 s. Having an onset desorption temperature of 483 K in vacuum, the NbCl5 -containing composite desorbed hydrogen faster than the no-halide doped sample. The hydriding–dehydriding kinetics performance of the CrCl3-doped sample did not improve, but it did exhibit a lower onset desorption temperature of 543 K under 0.1 MPa, which was 20 K lower than that of the no-halide doped sample. NbO, NiO and NbH2 played important roles in improving absorption and desorption performances.

    • Author Affiliations

       

      Qi Wan1 Ping Li1 Teng Wang1 Xuanhui Qu1 Fuqiang Zhai1 Alex A Volinsky1 2 Philip J Logan1 2

      1. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
      2. Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.