Electrochemical behaviour of graphene–poly (3,4-ethylene- dioxythiophene) (PEDOT) composite electrodes for supercapacitor applications
Dona Jacob P A Mini Avinash Balakrishnan S V Nair K R V Subramanian
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/037/01/0061-0069
In this paper, we report on the electrochemical characteristics of graphene–PEDOT composite electrodes. The electrodes were made of indium tin oxide (ITO) substrates by simple processes of electrophoretic deposition of graphene followed by electropolymerization of EDOT monomer. The composite electrode was obtained by electrochemical measurements, a median specific capacitance of 1410 F/g and a median area capacitance of 199 mF cm−2 at a scan rate of 40 mVs−1. The composite showed good stability characteristics after repeated scans in cyclic voltammmetry and fared much better than a thin film of PEDOT. The thermal stability of the composite is also much superior when compared to the polymer with a weight loss temperature of 350° C for the composite and 250° C for the polymer, respectively. The above electrochemical and thermal behaviours of the composite are correlated to the unique morphology of electrodeposited graphene that provides a conductive and high surface area template for electropolymerization.
Dona Jacob1 P A Mini1 Avinash Balakrishnan1 S V Nair1 K R V Subramanian1
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.