• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/036/06/1127-1132

    • Keywords

       

      in vivo biocompatibility; polydimethylsiloxane; parylene-C.

    • Abstract

       

      Implantable devices are often composed of or coated with different biologically compatible materials based on their requirements. Selecting a surface material for an implantable device is not an easy task, and it is necessary to compare the biocompatibilities of the available surface materials. In this study, we perform a comparison of the in vivo biocompatibilities of polydimethylsiloxane (PDMS) and para-xylyene polymer (parylene-C) as they are considered to be candidates for a coating material for implantable microelectronic devices. For in vivo biocompatibility testing, fifty four male Sprague-Dawley rats were used for testing, and they were divided into three groups (PDMS, parylene-C and a positive control). At one, four and twelve weeks after implantation of the test object, the density of inflammatory cells and the granulation layer thickness were recorded for each group and compared with other groups using visible light and fluorescence microscopy. The thickness of the granulation layer tended to decrease over time for all of the experimental groups, whereas the granulation layer thickness remained constant in the positive control group. The thinnest capsular layer was observed for the parylene-C group and fewest inflammatory cells were observed in this group during the entire experimental period. Macrophage infiltration was minimal, even at one week, and was not observed thereafter. The parylene-C group showed better biocompatibility than the PDMS groups, both for acute and chronic implantation. Thus, parylene-C is the best candidate of the tested materials for applications involving permanent implantable micro-devices.

    • Author Affiliations

       

      Dong Sup Lee1 Su Jin Kim1 Eun Bi Kwon1 Cheol Whee Park2 Su Min Jun3 Bumkyoo Choi3 Sae Woong Kim1

      1. Department of Urology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
      2. Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
      3. Department of Mechanical Engineering, Sogang University, Seoul, Korea
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.