High temperature impedance spectroscopy of barium stannate, BaSnO3
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/036/06/1019-1036
Polycrystalline powder of BaSnO3 was prepared at 1300 °C using a high-temperature solid-state reaction technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: 𝑎 = (4.1158 ± 0.0003) Å. The synthesized powder was characterized using X-ray diffraction (XRD) scanning electron micrographs, energy dispersive X-ray analysis, differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show that total impedance is due to the contributions of grains, grain boundaries and electrode. Resistance of these contributions has been determined. Variation of these resistances with temperature shows the presence of two different regions with different slopes. The nature of variation for the above three resistances, in both the temperature regions confirms that conducting species (phases) responsible for grain, grain boundaries and electrode are the same. Based on the value of activation energy, it is proposed that conduction via hopping of doubly ionized oxygen vacancies ($V^{\bullet \bullet}_{o}$) is taking place in the temperature region of 300–450 °C, whereas in the temperature region of 450–650 °C, hopping of proton, i.e. OH$^{\bullet}$ ions occurs.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.