• A novel method for massive synthesis of SnO2 nanowires

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/036/06/0953-0960

    • Keywords

       

      SnO2; nanowires; thermite reaction; growth mechanism.

    • Abstract

       

      This paper reports a simple, inexpensive and fast method to prepare SnO2 nanowires. A large amount of ultra-long high purity single-crystalline SnO2 nanowires with rutile structure, that is over hundreds of micrometers in length and 20–100 nm in diameter, have been synthesized through a one-step typical thermite reaction at 200 °C in O2 atmosphere, with a gas pressure of 0.9 atm. These SnO2 nanowires do not grow in one direction as those synthesized by other methods do, and are perfect single crystals without any dislocation or point defects detected in TEM images. The optoelectronic properties of these smooth and uniform nanowires have been characterized by means of X-ray photoelectron spectra, laser Raman spectrum and Fourier transform infrared spectrum. The result of X-ray photoelectron spectra analysis shows that some oxygen vacancies exist in these SnO2 nanowires. In addition, possible growth mechanism of the SnO2 nanowires has been described in detail by the studies of comparative experiments, which is quite different from that of SnO2 nanowires synthesized by some other methods.

    • Author Affiliations

       

      Guodong Zhang1 Nian Liu1

      1. Department of Materials Engineering, Wuhan University, Wuhan 430072, P. R. China
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.