• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Rapid solidification; amorphous; nanocrystalline; glass forming ability; Finemet; soft magnetic properties.

    • Abstract


      The investigation has dealt with the structure and magnetic properties of rapidly solidified and annealed Fe73.5−𝑥Si13.5B9Nb3Cu1Al𝑥 (𝑥 = 0, 2, 4, 6 at%) ribbons prepared by melt spinning. Complete amorphous structure was obtained in as-spun ribbons of 𝑥 = 0 and 2 at% compositions, whereas structure of ribbons containing higher Al was found to be partially crystalline. Detailed thermal analyses of the alloys and the melt spun ribbons revealed that the glass forming ability in the form of 𝑇x/𝑇l (ratio between crystallization and liquidus temperature) is the highest for 2 at% Al alloys and decreases with further addition of Al. Annealing of all as spun ribbons resulted in the precipitation of nanocrystalline phase embedded in amorphous matrix in the form of either 𝐷𝑂3 phase or 𝑏𝑐𝑐 𝛼-Fe(Si/Al) solid solution depending on the initial composition of the alloy. Only 𝑏𝑐𝑐 𝛼-Fe(Si/Al) solid solution was formed in 2 at% Al ribbons whereas ordered DO3 structure was found to be stabilized in other ribbons including 0 at% Al. A detailed study on determination of precision lattice parameter of nanocrystalline phase revealed that the lattice parameter increases with the addition of Al indicating the partitioning behaviour of Al in nanocrystalline phase.

    • Author Affiliations


      Gautam Agarwal1 Himanshu Agrawal1 M Srinivas2 B Majumdar3 N K Mukhopadhyay1

      1. Department of Metallurgical Engineering, Banaras Hindu University, Varanasi 221 005, India
      2. Naval Science and Technological Laboratory, Visakhapatnam 530 027, India
      3. Defence Metallurgical Research Laboratory, Hyderabad 500 058, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.