• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/036/04/0601-0606

    • Keywords

       

      Ceramics; chemical synthesis; microstructure; dielectric properties; positive temperature coefficient of conductivity.

    • Abstract

       

      Ceramics of BaTiO3 co-doped with Gd and Cr at Ba-site was synthesized via solid-state reaction route. Surface morphology shows the increase in grain size with the increase of Cr-content below 3 mol%. The high value of 𝜀 in the synthesized samples is associated with space charge polarization and inhomogeneous dielectric structure. Gd is diffused well into the most of Ba sites and vacancies leaving very few defects or voids for the generation of absorption current which results in dielectric loss. Below 3 mol% of Cr-concentration, dissipation factor was improved. Increase in a.c. conductivity with rise of temperature is due to increase in thermally activated electron drift mobility of charges according to the hopping conduction mechanism. Moreover, samples show the positive temperature coefficient of conductivity, which is most desirable for developing highly sensitive thermal detectors and sensors. Also, higher frequency indicates motion of charges in the ceramic samples.

    • Author Affiliations

       

      Shivanand Madolappa1 Raghavendra Sagar1 Nagbasavanna Sharanappa1 R L Raibagkar1

      1. Department of Post Graduate Studies and Research in Materials Science, Gulbarga University, Gulbarga 585 106, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.