Sulfonated carbon black-based composite membranes for fuel cell applications
Hacer Doǧan Emel Yildiz Metin Kaya Tülay Y Inan
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/036/04/0563-0573
Two different commercial grade carbon black samples, Cabot Regal 400R (C1) and Cabot Mogul L (C2), were sulfonated with diazonium salt of sulfanilic acid. The resultant sulfonated carbon black samples (S–C) were characterized by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton conduction, water uptake, ion exchange capacity and chemical stability. Incorporation of S–C particles above 0.25 wt% caused decrease in chemical stability. Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of the composite membranes with the addition of S–C particles at high concentrations due to the agglomeration problems and decrease in the content of conductive polymer matrix.
Hacer Doǧan1 Emel Yildiz1 Metin Kaya2 Tülay Y Inan1
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.