• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/036/03/0353-0359

    • Keywords

       

      DMFC; anode catalyst; methanol oxidation; Pt–Ru; accelerated durability test.

    • Abstract

       

      Porous titanium oxide–carbon hybrid nanostructure (TiO2–C) with a specific surface area of 350 m2/g and an average pore-radius of 21.8 Å is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2–C supported Pt–Ru electro-catalyst (Pt–Ru/TiO2–C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2–C. TEM images reveal uniform distribution of Pt–Ru nanoparticles (𝑑Pt−Ru = 1.5–3.5 nm) on TiO2–C. Methanol oxidation and accelerated durability studies on Pt–Ru/TiO2–C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt–Ru. DMFC employing Pt–Ru/TiO2–C as an anode catalyst delivers a peak-power density of 91 mW/cm2 at 65 °C as compared to the peak-power density of 60 mW/cm2 obtained for the DMFC with carbon-supported Pt–Ru anode catalyst operating under similar conditions.

    • Author Affiliations

       

      K G Nishanth1 P Sridhar1 S Pitchumani1 A K Shukla2

      1. CSIR-Central Electrochemical Research Institute - Madras Unit, CSIR Madras Complex, Chennai 600 113, India
      2. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.