• Spin canting phenomenon in cadmium doped cobalt ferrites, CoCd𝑥Fe2−𝑥O4 (𝑥 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), synthesized using sol–gel auto combustion method

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/036/01/0107-0114

    • Keywords

       

      Transmission electron microscope; electrical resistivity; spin canting.

    • Abstract

       

      Synthesis of non-collinear (spin canted) ferrites having the formula, CoCd𝑥Fe2−𝑥O4 (𝑥 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased beyond 𝑥 = 0.4. The FT–IR spectra confirm the formation of the metal oxide bond as they exhibit two frequency bands in the range of ∼595 cm-1 and ∼450 cm-1, corresponding to the tetrahedral and the octahedral stretching vibrations of the metal oxide, respectively. The structural evolutions of the nanophase investigated using powder X-ray diffraction (XRD) technique show that the average crystallite size is ∼35 nm. The magnetic studies reveal that the saturation magnetization, 𝑀s, increases up to 𝑥 = 0.4 and decreases when the value of 𝑥 is > 0.4. It is proposed that the incorporation of Cd2+ ion takes place into the tetrahedral sites and up to 𝑥 = 0.4, Neel’s model is followed. But for 𝑥 > 0.4, canting of spins occurs, as explained by Yafet–Kittel (Y–K) model. The d.c. resistivity decreases as a function of temperature, indicating semiconducting nature of the ferrites and the positive value of Seebeck coefficient establishes 𝑝-type conduction behaviour for all the ferrite samples.

    • Author Affiliations

       

      Sonal Singhal1 Sheenu Jauhar1 Kailash Chandra2 Sandeep Bansal3

      1. Department of Chemistry, Panjab University, Chandigarh 160 014, India
      2. 33/1, Bhagirath Kunj, Railway Station Road, Roorkee 247 667, India
      3. Department of Science and Technology, New Delhi 110 016, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.