• Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Geopolymer; fly ash; rice husk bark ash; percentage of water absorption; artificial neural networks.

    • Abstract


      In the present work, percentage of water absorption of geopolymers made from seeded fly ash and rice husk bark ash has been predicted by artificial neural networks. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activatormade of water glass and NaOH solution, were subjected to permeability tests at 7 and 28 days of curing. The curing regime was different: one set cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 h at a range of 40–90 °C and then cured at room temperature for 7 and 28 days. To build the model, training and testing using experimental results from 120 specimens were conducted. According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.

    • Author Affiliations


      Ali Nazari1

      1. Department of Materials Science and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.