• Investigation of superhydrophilic mechanism of titania nano layer thin film—Silica and indium oxide dopant effect

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      TiO2; sol–gel method; surface acidity; superhydrophilicity.

    • Abstract


      In this paper, TiO2–SiO2–In2O3 nano layer thin films were deposited on glass substrate using sol–gel dip coating method. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements were used to evaluate chemical structure, surface composition, hydroxyl group contents and superhydrophilicity of titania films. FTIR result indicated that Si–O–Si, Si–O–Ti and Ti–O–Ti bands formed in TiO2–SiO2–In2O3 sample. According to XPS, the hydroxyl content for TiO2, TiO2–SiO2 and TiO2–SiO2–In2O3 films was calculated as 11.6, 17.1 and 20.7%, respectively. The water contact angle measurements indicated that silica and indium oxide dopant improved the superhydrophilicity of titania nano film surface especially in a dark place. The enhanced superhydrophilicity can be related to the generation of surface acidity on the titania nano film surfaces. In the present state, superhydrophilicity is induced by the simultaneous presence of both Lewis and Bronsted sites.

    • Author Affiliations


      Akbar Eshaghi1 Ameneh Eshaghi2

      1. Faculty of Materials Science and Engineering, Maleke Ashtar University of Technology, Isfahan, Shahinshahr, Iran
      2. Sari branch, Islamic Azad University, Sari, Iran
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.