• Synthesis and in situ mechanism of nuclei growth of layered double hydroxides

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      LDHs; growth mechanism; morphology.

    • Abstract


      A host–guest material such as layered double hydroxide (LDH) has generated immense interest in current research due to its technological importance, whereby its dimension significantly affect its mechanical and other physical properties. The purpose of this study was to prepare Mg/Al-LDHs by systematically varying the molar concentration of cations, aging time and pH. The prepared LDHs were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis and transmission electron microscopy to confirm their formation and morphology. We qualitatively observed a new growth route for LDH system which is dissimilar to the existing growth mechanism. The rate of growth is shown to be slower than the well known Ostwald ripening process. This unusual behaviour is due to the formation of effective passivation layer by Na+ ions around the generated LDHs nuclei. This suggested growth mechanism will be helpful in further controlling the particle size of other LDH, which may be useful for various future applications.

    • Author Affiliations


      H S Panda1 R Srivastava2 D Bahadur1

      1. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076, India
      2. School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.