Synthesis of one-dimensional N-doped Ga2O3 nanostructures: different morphologies and different mechanisms
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/034/07/1331-1338
N-doped monoclinic Ga2O3 nanostructures of different morphologies have been synthesized by heating Ga metal in ambient air at 1150°C to 1350°C for 1 to 5 h duration. Neither catalyst nor any gas flow has been used for the synthesis of N-doped Ga2O3 nanostructures. The morphology was controlled by monitoring the curvature of the Ga droplet. Plausible growth mechanisms are discussed to explain the different morphology of the nanostructures. Elemental mapping by electron energy loss spectroscopy of the nanostructures indicate uniform distribution of Ga, O and N. It is interesting to note that we have used neither nitride source nor any gas flow but the synthesis was carried out in ambient air. We believe that ambient nitrogen acts as the source of nitrogen. Unintentional nitrogen doping of the Ga2O3 nanostructures is a straightforward method and such nanostructures could be promising candidates for white light emission.
Volume 43, 2020
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.