• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/033/04/0407-0411

    • Keywords

       

      Coefficient of thermal expansion; perovskite; doped lanthanum gallate; solid oxide fuel cells.

    • Abstract

       

      Thermal expansion of several compositions of Sr and Mg-doped LaGaO3 including an 𝐴-site deficient composition (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O2.821 were measured in the temperature range from 298 to 1273 K. The effect of doping on thermal expansion was studied by varying the composition at one site of the perovskite structure (either 𝐴 or 𝐵), while keeping the composition at the other site invariant. Thermal expansion varied nonlinearly with temperature and exhibited an inflexion between 550 and 620 K, probably related to the change in crystal structure from orthorhombic to rhombohedral. The dependence of average thermal expansion coefficient (𝛼av) on the dopant concentration on either 𝐴 or 𝐵 site of the perovskite structure was found to be linear, when the composition at the other site was kept constant. Mg doping on the 𝐵-site had a greater effect on the average thermal expansion coefficient than Sr doping on the 𝐴-site. Cation deficiency at the 𝐴-site decreases thermal expansion when compositions at both sites are held constant.

    • Author Affiliations

       

      K T Jacob1 S Jain1 V S Saji1 P V K Srikanth1

      1. Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.