• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      𝛾-Fe2O3; microwave assisted; adsorption; lead; structure.

    • Abstract


      New combustion synthetic route for the synthesis of nanosized 𝛾-Fe2O3 by microwave-assisted route is reported. X-ray density, tap density and powder density of prepared 𝛾-Fe2O3 are calculated. Adsorption study of Pb2+ on combustion derived nanosized 𝛾-Fe2O3 is studied by dynamic method. The 𝛾-Fe2O3 structure and lead adsorbed 𝛾-Fe2O3 (Pb-𝛾-Fe2O3) are studied by X-ray diffraction (XRD). Additional lead peaks in Pb-𝛾-Fe2O3 sample pattern confirm the lead adsorption. Morphology of as prepared 𝛾-Fe2O3 and Pb-𝛾-Fe2O3 is studied by scanning electron micrograph (SEM) technique. Varied morphology for Pb-𝛾-Fe2O3 compared to its 𝛾-Fe2O3 is observed. Variation of bonding in Pb-𝛾-Fe2O3 sample due to lead adsorption is viewed by infrared spectroscopic (IR) technique. Energy dispersive X-ray microanalysis (EDX) is scanned for the lead adsorbed 𝛾-Fe2O3 to know the presence of lead on 𝛾-Fe2O3 surface. The eluent lead solution is characterized by atomic absorption spectroscopy (AAS) and solution conductivity (SC). Reduction in the concentration and increase in conductance of eluent lead solution is observed. The potential use of solid adsorbents for the adsorption of heavy metal pollutants is envisaged in the present work.

    • Author Affiliations


      Arunkumar Lagashetty1 H Vijayanand1 S Basavaraja2 N N Mallikarjuna3 A Venkataraman2

      1. Appa Institute of Engineering and Technology, Gulbarga 585 102, India
      2. Department of Materials Science, Gulbarga University, Gulbarga 585 106, India
      3. Centre of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India
    • Dates

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.