• Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas sensor

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/032/05/0493-0498

    • Keywords

       

      Patterned wafer; anisotropic etching; nanorods; catalytic growth; surface enhanced Raman scattering; sensor material.

    • Abstract

       

      ZnO nanorods have been synthesized over etch-patterned Si (110) wafer using annealed silver thin film as growth catalyst. The growth of ZnO nanorods were performed by a two-step process. Initially, the deposition of Zn thin film was done on the annealed silver catalyst film over etch-patterned Si (110) substrate by thermal evaporation, and then annealed at 800°C in air. The etching of the patterned Si (110) wafers was carried out by 50% aqueous KOH solution. The samples were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and room temperature photoluminescence spectroscopy. `V’ shaped grooves with no undercut were formed after etching due to the anisotropic nature of the KOH etchant. The etch-patterned wafer was used to provide larger surface area for ZnO growth by forming `V’-grooves. This ZnO film may be predicted as a very good material for gas sensor.

    • Author Affiliations

       

      S K Panda1 C Jacob1

      1. Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.