• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/032/03/0329-0336

    • Keywords

       

      Borophosphate glass; surface degradation; aqueous media.

    • Abstract

       

      The degradation behaviour of phosphate glass with nominal composition, 40Na2O–10BaO–𝑥B2O3–(50–𝑥)P2O5, where 0 ≤ 𝑥 ≤ 20 mol%, was studied in water, HCl and NaOH solutions at room temperature to 60°C for different periods extending up to 300 h. These glasses were synthesized by conventional melt-quench technique. Dissolution rates were found to increase with B2O3 content in the glass. The dissolution rates for the glass having 10 mol% B2O3 were found to be 0.002 g/cm2 and 0.015 g/cm2 in distilled water and 5% NaOH solution, respectively, at room temperature after 225 h of total immersion period, whereas it increased considerably to 0.32 g/cm2 in 5% NaOH at 60°C after 225 h. However, glass samples with 𝑥 = 15 and 20 mol% B2O3 were dissolved in 5% HCl solution after 5 h immersion. The degradation behaviour has been correlated with the structural features present in the glass. The optical microscopy of the corroded surface revealed that the corrosion mechanism were different in acid and alkali media.

    • Author Affiliations

       

      K V Shah1 2 M Goswami1 S Manikandan1 V K Shrikhande1 G P Kothiyal1

      1. Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
      2. Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Mumbai 400 005, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.