Thermodynamic analysis of growth of iron oxide films by MOCVD using tris(𝑡-butyl-3-oxo-butanoato)iron(III) as precursor
Sukanya Dhar K Shalini S A Shivashankar
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/031/05/0723-0728
Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the 𝛽-ketoesterate complex of iron [tris(𝑡-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen. The calculations predict, under different CVD conditions such as temperature and pressure, the deposition of carbon-free pure Fe3O4, mixtures of different proportions of Fe3O4 and Fe2O3, and pure Fe2O3. The regimes of these thermodynamic CVD parameters required for the deposition of these pure and mixed phases have been depicted in a `CVD phase stability diagram’. In attempts at verification of the thermodynamic calculations, it has been found by XRD and SEM analysis that, under different conditions, MOCVD results in the deposition of films comprising pure and mixed phases of iron oxide, with no carbonaceous impurities. This is consistent with the calculations.
Sukanya Dhar1 K Shalini1 S A Shivashankar1
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.