• Inhibition of corrosion of mild steel in acid media by N′-benzylidene-3-(quinolin-4-ylthio)propanohydrazide

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Activation energy; adsorption isotherms; corrosion inhibitors; mild steel; scanning electron microscopy; thermodynamic parameters.

    • Abstract


      In the present investigation a new corrosion inhibitor, N′-(3,4-dihydroxybenzylidene)-3-{[8-(trifluoromethyl) quinolin-4-yl]thio}propanohydrazide(DHBTPH) was synthesized, characterized and tested as a corrosion inhibitor for mild steel in HCl (1 M, 2 M) and H2SO4 (0.5 M, 1 M) solutions using weight-loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The corrosion inhibition efficiency measured by all the above three techniques were in good agreement with each other. The results showed that DHBTPH is a very good inhibitor for mild steel in acidic media. The inhibition efficiency in different acid media was found to be in the decreasing order 0.5 M H2SO4 > 1 M HCl > 1 M H2SO4 > 2 M HCl. The inhibition efficiency increases with increasing inhibitor concentration and with increasing temperature. It acts as an anodic inhibitor. Thermodynamic and activation parameters are discussed. Adsorption of DHBTPH was found to follow the Langmuir’s adsorption isotherm. Chemisorption mechanism is proposed. The mild steel samples were also analysed by scanning electron microscopy (SEM).

    • Author Affiliations


      V Ramesh Saliyan1 Airody Vasudeva Adhikari1

      1. Department of Chemistry, National Institute of Technology, Surathkal 575 025, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.