• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/031/04/0673-0680

    • Keywords

       

      Antireflection coating; polycarbonate; ophthalmic lenses; optical thin film; plasma polymerization.

    • Abstract

       

      Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

    • Author Affiliations

       

      K M K Srivatsa1 M Bera1 A Basu1 T K Bhattacharya1

      1. Division of Electronic Materials, National Physical Laboratory, New Delhi 110 012, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.