• Electrical and optical properties of silicon-doped gallium nitride polycrystalline films

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Polycrystalline materials; III–V semiconductors; hopping conduction.

    • Abstract


      Si-doped GaN films in polycrystalline form were deposited on quartz substrates at deposition temperatures ranging from 300–623 K using r.f. sputtering technique. Electrical, optical and microstructural properties were studied for these films. It was observed that films deposited at room temperature contained mainly hexagonal gallium nitride (ℎ-GaN) while films deposited at 623 K were predominantly cubic (𝑐-GaN) in nature. The films deposited at intermediate temperatures were found to contain both the hexagonal and cubic phases of GaN. Studies on the variation of conductivity with temperature indicated Mott’s hopping for films containing 𝑐-GaN while Efros and Shklovskii (E–S) hopping within the Coulomb gap was found to dominate the carrier transport mechanism in the films containing ℎ-GaN. A crossover from Mott’s hopping to E–S hopping in the `soft’ Coulomb gap was noticed with lowering of temperature for films containing mixed phases of GaN. The relative intensity of the PL peak at ∼ 2.73 eV to that for peak at ∼ 3.11 eV appearing due to transitions from deep donor to valence band or shallow acceptors decreased significantly at higher temperature. Variation of band gap showed a bowing behaviour with the amount of cubic phase present in the films.

    • Author Affiliations


      S R Bhattacharyya1 A K Pal1

      1. Department of Instrumentation Science, USIC Building, Jadavpur University, Kolkata 700 032, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.