• Performance evaluation of reactive direct current unbalanced magnetron sputter deposited nanostructured TiN coated high-speed steel drill bits

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/030/06/0607-0614

    • Keywords

       

      Semi-industrial unbalanced magnetron sputtering system; nanostructured TiN coatings; HSS drill bits; performance evaluation.

    • Abstract

       

      The stainless steels, in general, are considered to be difficult-to-machine materials. In order to machine these materials the surface of the tool is generally coated with physical vapour deposition (PVD) hard coatings such as titanium nitride (TiN), titanium aluminum nitride (TiAlN), etc. The adhesion is of vital importance for the performance of tools coated with PVD coatings. Proper surface treatments (in situ and ex situ) are required to achieve highly adherent PVD coatings on tools. We have deposited nanostructured TiN coatings on high-speed steel (HSS) drill bits and mild steel substrates using an indigenously built semi-industrial fourcathode reactive direct current (d.c.) unbalanced magnetron sputtering system. Various treatments have been given to the substrates for improved adhesion of the TiN coatings. The process parameters have been optimized to achieve highly adherent thick good quality TiN coatings. These coatings have been characterized using X-ray diffraction, nanoindentation and atomic force microscopy techniques. The performance of the coated HSS drill bits is evaluated by drilling a 13 mm thick 304 stainless steel plate under wet conditions. The results show significant improvement in the performance of the TiN coated HSS drill bits.

    • Author Affiliations

       

      Harish C Barshilia1 K S Rajam1

      1. Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.