• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      PCT isotherms; hydrogen storage materials; TPS; thermodynamics; thermal properties; electrical properties.

    • Abstract


      The structural, electrical and thermodynamic properties of a La–Ni–Si [La = 28.9%, Ni = 67.5%, Si = 3.6%] alloy have been investigated. Powder XRD results show that the lattice constants and unit cell volume of the alloy increase after hydrogen storage. It was also found that the resistance of the alloy increased with dissolved hydrogen concentration. Hydrogen absorption pressure composition isotherms have also been investigated which show the presence of two single 𝛼 and 𝛽 regions and one mixed (𝛼 + 𝛽) phase. The thermodynamic parameters viz. the relative partial molar enthalpy (𝛥 𝐻) and relative partial molar entropy (𝛥 𝑆) of dissolved hydrogen, are found to be in the range 8–18 kJ (mol H)-1 and 25–63 JK-1 (mol H)-1. From the dependence of 𝛥 𝐻 on the hydrogen concentration, 𝑋, the different phases [𝛼, 𝛼+ 𝛽, 𝛽] and phase boundaries of the alloy-𝐻 system are identified. Thermal conductivity and diffusivity of La–Ni–Si and its hydride have been measured at room temperature by using TPS technique. Thermal conductivity was found to decrease due to absorbed hydrogen in the alloy.

    • Author Affiliations


      Ankur Jain1 R K Jain1 Shivani Agarwal1 I P Jain1

      1. Material Science Laboratory, Centre for Non-Conventional Energy Resources, 14, Vigyan Bhawan, University of Rajasthan, Jaipur 302 004, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.