Effect of B2O3 addition on microhardness and structural features of 40Na2O–10BaO–𝑥B2O3–(50–𝑥)P2O5 glass system
K V Shah M Goswami M N Deo A Sarkar S Manikandan V K Shrikhande G P Kothiyal
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/029/01/0043-0048
Phosphate glasses having composition, 40Na2O–10BaO–𝑥B2O3–(50–𝑥)P2O5, where 𝑥 = 0–20 mol% were prepared using conventional melt quench technique. Density of these glasses was measured using Archimedes principle. Microhardness (MH) was measured by Vicker’s indentation technique. Structural studies were carried out using IR spectroscopy and 31P and 11B MAS NMR. Density was found to vary between 2.62 and 2.77 g/cc. MH was found to increase with the increase in boron content. 31P MAS NMR spectra showed the presence of middle 𝑄2 groups and end 𝑄1 and 𝑄0 groups with P–O–B linkages. FTIR studies showed the presence of BO3 and BO4 structural units along with the depolymerization of phosphate chains in conformity with 31P MAS NMR. 11B NMR spectra showed increase in BO4 structural units with increasing boron content. The increase in MH with B2O3 content is due to the increase of P–O–B linkages and BO4 structural units as observed from MAS NMR studies resulting in a more rigid borophosphate glass networks.
K V Shah1 M Goswami1 M N Deo2 A Sarkar1 S Manikandan1 V K Shrikhande1 G P Kothiyal1
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.