• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Chalcogenide glasses; hopping conduction; density of defect states.

    • Abstract


      Temperature and frequency dependence of a.c. conductivity have been studied in glassy Se100–𝑥Te𝑥 (𝑥 = 10, 20 and 30) over different range of temperatures and frequencies. An agreement between experimental and theoretical results suggests that the a.c. conductivity behaviour of selenium–tellurium system (Se100–𝑥Te𝑥) can be successfully explained by correlated barrier hopping (CBH) model. The density of defect states has been determined using this model for all the glassy alloys.

      The results show that bipolaron hopping dominates over single-polaron hopping in this glassy system. This is explained in terms of lower values of the maximum barrier height for single-polaron hopping. The values of density of charged defect states increase with increase in Te concentration. This is in agreement with our previous results obtained from SCLC measurements.

    • Author Affiliations


      N Mehta1 A Dwivedi2 R Arora2 S Kumar3 A Kumar1

      1. Department of Physics, Harcourt Butler Technological Institute, Kanpur 208 002, India
      2. Department of Physics, P.P.N. College, Kanpur 208 001, India
      3. Department of Physics, Christ Church College, Kanpur 208 001, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.