• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/028/05/0445-0452

    • Keywords

       

      Triaxial porcelain; titania; mineralizer; fired properties.

    • Abstract

       

      Titania was progressively added in the range 3–9 wt% into a triaxial porcelain body consisting of clay, quartz and feldspar. The composed bodies were heated at five different temperatures in the range 1200–1400°C and their fired properties as well as phases evolved were studied. The results revealed that beyond 1300°C, formation of more liquid phases caused bloating in samples which led to generation of pores. This effect is more pronounced in TiO2 containing samples. In the present system, 1300°C appeared to be the optimum temperature at which porosity was almost negligible and strength was maximum (45 MPa), particularly in presence of TiO2. From the results of XRD studies, it was revealed that quartz content primarily decreased with increase in TiO2 content due to excess glass formation and its subsequent dissolution. Mullite content increased with increase in TiO2 content. No significant effect was observed beyond 6 wt% addition. Microstructure primarily showed the presence of quartz grain and cluster of smaller sized primary mullite crystals in both the samples without and with TiO2. Very few secondary mullite crystals were also observed. SEM picture of sample containing 9 wt% TiO2 showed some grain boundary crack due to cooling stress generated in the glassy phase. The drastic reduction of residual strength after 8 cycles of heating at 800°C and cooling particularly in TiO2 containing samples suggests controlled heat treatment of the vitrified samples necessary to promote secondary crystallization process for the enhancement of strength. Attempts have also been made to correlate the constitutional parameters with the properties.

    • Author Affiliations

       

      Sunipa Bhattacharyya1 Swapan Kumar Das2 Nirendra Krishna Mitra1

      1. Department of Chemical Technology, Calcutta University, Kolkata 700 009, India
      2. Clay and Traditional Ceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.