• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Fe3Al; intermetallic; diffusion bonding; interface; diffusion.

    • Abstract


      The distribution of elements near the Fe3Al/Q235 diffusion bonding interface was computed by the diffusion equation as well as measured by means of EPMA. The results indicated close agreement between the two for iron and aluminium. Diffusion coefficient in the interface transition zone is larger than that in the Fe3Al and Q235 steel at the same temperature, which is favourable to elemental diffusion. The diffusion distance near the Fe3Al/Q235 interface increased with increasing heating temperature, 𝑇, and the holding time, 𝑡. The relation between the width of the interface transition zone, 𝑥, and the holding time, 𝑡, conformed to parabolic growth law: 𝑥2 = 4.8 × 104 exp(– 133/RT) (𝑡 – 𝑡0). The width of the interface transition zone does not increase significantly for holding times beyond 60 min.

    • Author Affiliations


      Li Yajiang1 2 Wang Juan2 Yin Yansheng2 Ma Haijun2

      1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, China
      2. National Key Lab of Advanced Welding Technology, Harbin Institute of Technology, Harbin 150001, China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.