• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Sol–gel silica glass; laser material; absorption and emission cross-section.

    • Abstract


      Er3+ and Er3+ : Yb3+ doped optical quality, crack and bubble free glasses for possible use in making laser material have been prepared successfully through sol–gel route. The thermal and optical, including UV-visible absorption, FTIR etc characterizations were undertaken on the samples. The absorption characteristics of Er3+ doped samples clearly revealed the absorption due to Er3+ ions. On the other hand Yb3+ : Er3+ doped samples showed enhanced absorption due to ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ transition. The absorption and emission crosssection for ${}^{2}F_{7/2} \leftrightarrow {}^{2}F_{5/2}$ of Yb3+ were estimated. FTIR absorption spectra have clearly shown the reduction of the absorption peak intensity with heat treatment in the range 3700–2900 cm-1. The 960 cm-1 band also showed progressive decrease in the absorption band peak intensity with heat treatment. The result of the investigations with essential discussions and conclusions have been reported in this paper.

    • Author Affiliations


      Dipankar Mandal1 H D Banerjee1 M L N Goswami2 H N Acharya2

      1. Materials Science Centre, Optical Fibre Unit, Indian Institute of Technology, Kharagpur 721 302, India
      2. Central Research Facility, Optical Fibre Unit, Indian Institute of Technology, Kharagpur 721 302, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.