• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/027/02/0189-0198

    • Keywords

       

      Tellurite glasses; Li+ ion transport.

    • Abstract

       

      Lithium ion conductivity has been investigated in a boro-tellurite glass system, LiCl.LiBO$_{2}\cdot$TeO2.In the absence of LiCl, the conductivity increases with increasing non-bridging oxygen (NBO) concentration. LiCl addition has little influence on total conductivity although the observed barriers are low. Formation of LiCl clusters appears evident. In the a.c. conductivity and dielectric studies, it is observed that the conductivity mechanism remains the same in all compositions and at all temperatures. A suggestion is made that Li+ ion transport may be driven by bridging oxygen $\leftrightarrow$ non-bridging oxygen (BO $\leftrightarrow$ NBO) switching, which is why the two different types of Li+ ions in the clusters and in the neighbourhood of NBOs, do not manifest in the conductivity studies.

    • Author Affiliations

       

      M Harish Bhat1 M Kandavel2 Munia Ganguli1 K J Rao1

      1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
      2. Undergraduate summer research fellow of the Indian Academy of Sciences
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.