• Corrosion behaviour of amorphous Ti48Cu52, Ti50Cu50 and Ti60Ni40 alloys investigated by potentiodynamic polarization method

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Amorphous alloys; polarization; potentiodynamic; corrosion.

    • Abstract


      Potentiodynamic polarization studies were carried out on virgin specimens of amorphous alloys Ti48Cu52, Ti50Cu50 and Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. The value of the corrosion current density (𝐼corr) was maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. The value of 𝐼corr for the alloy Ti48Cu52 was maximum (𝐼corr = 2.6 × 10-5 A/cm2) in 0.5 M H2SO4 and minimum (𝐼corr = 3.5 × 10-6 A/cm2) in 0.5 M NaOH aqueous solutions. In contrast, the alloy Ti60Ni40 exhibited the least corrosion current density in 0.5 M HNO3 (𝐼corr = 4.0 × 10-7 A/cm2) and in 0.5 M NaOH (𝐼corr = 5.5 × 10-7 A/cm2) aqueous media as compared to those for Ti–Cu alloys, while its value in 0.5 M H2SO4 was comparable to that for Ti50Cu50. It is suggested that the alloy Ti60Ni40 is more corrosion resistant than the alloys Ti48Cu52 and Ti50Cu50 in all the three aqueous media.

    • Author Affiliations


      A Dhawan1 S Roychowdhury2 P K De2 S K Sharma1

      1. Department of Physics, Malaviya National Institute of Technology, Jaipur 302 017, India
      2. Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.