• Anisotropic behaviour of semiconducting tin monosulphoselenide single crystals

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Crystal growth; layered structure; resistivity; anisotropy; stacking disorder.

    • Abstract


      Single crystals of ternary mixed compounds of group IV–VI in the form of a series, SnS𝑥Se1-𝑥 (where 𝑥 = 0, 0.25, 0.50, 0.75 and 1), have been grown using direct vapour transport technique. The grown crystals were characterized by the X-ray diffraction analysis for their structural parameter determination. All the grown crystals were found to be orthorhombic. The microstructure analysis of the grown crystals reveals their layered type growth mechanism. From the Hall effect measurements Hall mobility, Hall coefficient and carrier concentration were calculated with all crystals showing 𝑝-type nature. The d.c. electrical resistivity measurements perpendicular to 𝑐-axis (i.e. along the basal plane) in the temperature range 303–453 K were carried out for grown crystals using four-probe method. The d.c. electrical resistivity measurements parallel to 𝑐-axis (i.e. perpendicular to basal plane) in the temperature range 303–453 K were carried out for the same crystals. The electrical resistivity measurements showed an anisotropic behaviour of electrical resistivity for the grown crystals. The anisotropic behaviour and the effect of change in stoichiometric proportion of S and Se content on the electrical properties of single crystals of the series, SnS𝑥Se1-𝑥 (where 𝑥 = 0, 0.25, 0.50, 0.75 and 1), is presented systematically.

    • Author Affiliations


      T H Patel1 Rajiv Vaidya1 S G Patel1

      1. Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388 120, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.