• Novel caged clusters of silicon: Fullerenes, Frank–Kasper polyhedron and cubic

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Silicon; fullerenes; Frank–Kasper polyhedron; cubic.

    • Abstract


      We review recent findings of metal (M) encapsulated caged clusters of Si and Ge obtained from computer experiments based on an ab initio pseudopotential method. It is shown that one M atom changes drastically the properties of Si and Ge clusters and that depending upon the size of the M atom, cages of 14, 15, and 16 Si as well as Ge atoms are formed. In particular M@Si16 silicon fullerene has been obtained for M = Zr and Hf, while a Frank–Kasper polyhedron has been obtained for M@X16, X = Si and Ge. These clusters show high stability and large highest occupied–lowest unoccupied molecular orbital (HOMO–LUMO) gaps which are likely to make these species strongly abundant. A regular icosahedral M@X12 cluster has also been obtained for X = Ge and Sn by doping a divalent M atom. Interactions between clusters are rather weak. This is attractive for developing self-assembled cluster materials.

    • Author Affiliations


      Vijay Kumar1

      1. Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Dr Vijay Kumar Foundation, 45 Bazaar Street, K. K. Nagar (West), Chennai 600 078, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.