• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/025/07/0599-0607

    • Keywords

       

      Rubber ferrite composites; a.c. electrical conductivity; mixed ferrites; electrical properties; magnetic materials; polymer magnets.

    • Abstract

       

      The effect of frequency, composition and temperature on the a.c. electrical conductivity were studied for the ceramic, Ni1–𝑥Zn𝑥Fe2O4, as well as the filler (Ni1–𝑥Zn𝑥Fe2O4) incorporated rubber ferrite composites (RFCs). Ni1–𝑥Zn𝑥Fe2O4 (where 𝑥 varies from 0 to 1 in steps of 0.2) were prepared by usual ceramic techniques. They were then incorporated into a butyl rubber matrix according to a specific recipe. The a.c. electrical conductivity (𝜎a.c.) calculations were carried out by using the data available from dielectric measurements and by employing a simple relationship. The a.c. conductivity values were found to be of the order of 10–3 S/m. Analysis of the results shows that 𝜎a.c. increases with increase of frequency and the change is same for both ceramic Ni1–𝑥Zn𝑥Fe2O4 and RFCs. 𝜎a.c. increases initially with the increase of zinc content and then decreases with increase of zinc. Same behaviour is observed for RFCs too. The dependence of 𝜎a.c. on the volume fraction of the magnetic filler was also studied and it was found that the a.c. conductivity of RFCs increases with increase of volume fraction of the magnetic filler. Temperature dependence of conductivity was studied for both ceramic and rubber ferrite composites. Conductivity shows a linear dependence with temperature in the case of ceramic samples.

    • Author Affiliations

       

      S Sindhu1 M R Anantharaman1 Bindu P Thampi1 K A Malini1 Philip Kurian2

      1. Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India
      2. Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682 022, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.