• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/025/02/0141-0154

    • Keywords

       

      Hydroxyapatite granules; new bone; fibroblast cells.

    • Abstract

       

      This study evaluated the tissue reaction to porous hydroxyapatite (HA) granules in a critical sized tibial-defect of New Zealand white rabbits for a period of 2, 6, 12 and 24 weeks. Physicochemical characterizations of the granules were done using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy to analyse the microstrucutre, composition, phase purity crystallinity and functional groups of HA. Prior to in vivo testing, the HA granules had proved to be biocompatible and cytocompatible en route in vitro studies using L929 mouse fibroblast cells. In the histologic evaluation, as early as 2 weeks, bone ingrowth was observed in the pores and interstices of the granules forming a network of bony trabeculae and over 6, 12 and 24 weeks, it was seen that the granules assisted in bone formation. Fluorochrome multilabels of yellow, red and orange lines showed active sites of bone mineralization in progress in the pores and periphery of the granules. Good osteointegration of the granules with the host bone was observed. There was neither inflammation nor fibreous tissue interposition while resorption of the material was in effect a slow process, since the HA granules still persisted after 24 weeks.

    • Author Affiliations

       

      Annie John1 S Abiraman1 H K Varma1 T V Kumari1 P R Umashankar1

      1. Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojapura, Thiruvananthapuram 695 012, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.