• On the origin of recrystallization textures

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Recrystallization; oriented nucleation; oriented growth; cube orientation

    • Abstract


      The development of recrystallization textures has been debated for the past 50 years. Essentially the rival theories of evolution of recrystallization textures i.e. oriented nucleation (ON) and oriented growth (OG) has been under dispute. In the ON model, it has been argued that a higher frequency of the special orientation (grains) than random occur, thus accounting for the texture. In the OG model, it has been argued that the specially oriented grains have a high mobility boundary and thus can migrate faster and grow to a larger size as compared to random orientations thus contributing to the final recrystallization texture.

      In FCC metals and alloys like aluminium, cube orientation [(001) $\langle$100$\rangle$] is the recrystallization texture component. In the classic OG model, cube orientation is supposed to be misoriented from 𝑆-orientation [(123) $\langle$63$\bar{4}\rangle$] which is a deformation texture component by a 40° about $\langle$111$\rangle$ relationship which is supposed to be a high mobility boundary leading to faster growth of cube grains. Stereographic calculations and analytical calculations are presented in this paper to the effect that the 𝑆-orientation (123) $\langle$63$\bar{4}\rangle$ is not misoriented from cube (100) $\langle$001$\rangle$ by 40° (111) whereas another deformation texture component (123) $\langle$41$\bar{2}\rangle$ which is termed the 𝑅-component is misoriented from cube component by 40°$\ \langle$111$\rangle$ . 𝑅-component is also seen in deformation textures of aluminium and hence the classic OG model remains valid with respect to the 𝑅-component.

    • Author Affiliations


      K T Kashyap1

      1. Central Materials and Processes Laboratory, Hindustan Aeronautics Ltd., Bangalore 560 017, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.