Role of work hardening characteristics of matrix alloys in the strengthening of metal matrix composites
K T Kashyap C Ramachandra C Dutta B Chatterji
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/023/01/0047-0049
The strengthening of particulate reinforced metal-matrix composites is associated with a high dislocation density in the matrix due to the difference in coefficient of thermal expansion between the reinforcement and the matrix. While this is valid, the role of work hardening characteristics of the matrix alloys in strengthening of these composites is addressed in the present paper. It is found that commercial purity aluminium which has the lowest work hardening rate exhibits the highest strength increment. This effect is due to increased prismatic punching of dislocations. This relationship of decreasing work hardening rate associated with increasing prismatic punching of dislocations in the order 7075, 2014, 7010, 2024, 6061 and commercial purity aluminium leading to increased strength increments is noted.
K T Kashyap1 C Ramachandra1 C Dutta1 B Chatterji1
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.