• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Yttrium samarium tartrate; thermal behaviour; solid state reaction kinetics

    • Abstract


      Thermal behaviour of gel-grown pure and mixed rare earth tartrates of yttrium and samarium is investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The thermal behaviour suggests that the materials are unstable at lower energies and pass through various stages of decomposition, decomposing to respective rare earth oxides which remain stable on further heating. It is estimated that both pure yttrium and pure samarium tartrate crystals carry eight waters of hydration, while mixed yttrium samarium tartrate crystals carry six waters of hydration. Critical examination of TG and DSC curves shows that the initial decompositions are endothermic and the latter are exothermic. Thermal kinetics of these materials has been worked out using Horowitz-Metzger, Piloyan-Novikova and Coats-Redfern equations. Application of these equations to these materials yields values of activation energy, order of reaction and frequency factor which are in reasonably good agreement.

    • Author Affiliations


      Anima Jain1 Sushma Bhat1 Sanjay Pandita1 M L Kaul1 2 P N Kotru1

      1. Department of Physics, University of Jammu, Jammu - 180 004, India
      2. Department of Chemistry, University of Jammu, Jammu - 180 004, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.