• Experimental evidence on molecular interaction in desorption and adsorption of CO molecules on metal surfaces

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/020/06/0769-0776

    • Keywords

       

      CO; Ni(100); Pt(111); adsorption; IR; desorption

    • Abstract

       

      Adsorption and desorption of CO on Ni(100) and Pt(111) surfaces are presented. At the thermodynamic equilibrium, the site occupation between the terminal and the bridged sites are described with the free energy of the system, including the vibrational entropy. Adsorption of CO onto a cold surface as 20 K has also been studied by infrared reflection absorption spectroscopy (IRAS). The occupation ratio of bridged CO to terminal CO species on Ni(100) at 20 K ranges from ∼ 2·8 to 0·7 at the total coverage from 0·003 to 0·15 ML. Such strong coverage dependence of the occupation ratio even at small coverages suggests that the interaction between CO molecules operates at relatively long range (> 10 Å). The isotope experiments suggest that there is substantial interaction between preadsorbed (accommodated) CO species and incoming (mobile) CO species. Desorption process is also affected by the interaction between the adsorbed CO and the incoming species. The effect of temporal bimolecular CO interaction on the desorption kinetics is also discussed.

    • Author Affiliations

       

      Maki Kawai1

      1. The Institute of Physical and Chemical Research (RIKEN), Wako - 351-01, Japan
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.