Synthesis of high-energy-density Pr2Fe14−xCoxB,x⩽3, magnets for practical applications
S Haldar S Ram P Ramachandrarao H D Banerjee
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/018/08/0963-0974
Stable magnetic powders, of 1–2µm particle size, of partially Co-substituted, Pr2Fe14−xCoxB,x⩽3, alloys together with 2–4 at% excess Pr were prepared by rapidly quenching the associated melts into thin ribbons and then mechanical attriting the ribbons in the refined particle sizes. The saturation magnetizationMs, remanent magnetizationJr, intrinsic coercivityHci and Curie temperatureTc were studied in characterizing the powders for fabricating into sintered or polymer bonded magnets. It is found that the smallx=0·4–0·8 substitution of the Co on Fe sites in this series sensitively leads to an increase in the value ofHci, by as much as 40%, with the optimum value of 21 kOe atx ∼ 0·55, together with an improvement in theTc from 292°C to 325°C, without significantly diluting theMs∼150 emu/g andJr∼8·0 kG values. The Co-substituted Pr2Fe14B alloy particles are better stable and corrosion resistant in ambient atmosphere. The results are discussed with the microstructure and comparison with the data for Nd2Fe14B powders processed under the same conditions.
S Haldar1 2 S Ram1 2 P Ramachandrarao1 H D Banerjee1 3
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.