• Heparin bonding: Then and now

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Heparin bonding; graphite-benzal konium; blood compatibility; Carmeda surface

    • Abstract


      Blood remains fluid so long as it flows in the cardiovascular system; it clots in other situations. While this phenomenon, vascular homeostasis, has been studied for a century, the development of artificial surfaces that induce minimal or no clotting became important only with the growth of cardiovascular surgery. The advent of the graphite-benzal konium-heparin surface which employed the ionic bonding of heparin was a milestone in the effort to develop non-clotting surfaces. The technique of ionic bonding was followed over the years by the grafting of heparin molecule to surfaces and most recently, by the covalent bonding of heparin. The covalent bonding of heparin preserves the non-clotting property of prosthetic surfaces for long periods and holds promise for numerous applications in cardiovascular surgery and other branches of medicine. The introduction of covalent bonding and similar approaches will greatly improve the biocompatibility and durability of the present generation of biomedical devices.

    • Author Affiliations


      M S Valiathan1 2

      1. Sree Chitra Tirunal Institute, Trivandrum - 695 011, India
      2. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore - 560 012, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.