• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Hydrogen charging; aluminium alloys; mechanical properties; microhardness

    • Abstract


      Cathodic hydrogen charging in 3·5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10−3/s) strain rate tensile testing technique. UTS and YS decreased in the case of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density. Elongation showed a decrease with increase in charging current density for both the alloys. However, elongation occurring throughout the gauge length in uncharged specimens changed over to localized deformation, thus increasing the reduction in area in charged specimens. A transition in fracture mode from surface (brittle) to the core (ductile) was observed. The presence of hydrogen increased the hardness, mostly indicative of solution strengthening and it decreased with depth confirming the existence of hydrogen concentration gradient. The effects were similar in 2014-T6, but to a slightly smaller extent.

    • Author Affiliations


      Amit Bandyopadhyay1 Rajan Ambat1 E S Dwarakadasa1

      1. Department of Metallurgy, Indian Institute of Science, Bangalore - 560 012, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.