• Current trends in the development and applications of superconducting materials

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/012/03-04/0225-0244

    • Keywords

       

      Superconductivity; materials; applications; oxide superconductors

    • Abstract

       

      The discovery of the phenomenon of superconductivity by Kamerlingh Onnes in 1911 was the first indication of the possibility of electrical conduction without any associated Joule loss. The technological application of the property (which was essentially manifested at liquid helium temperatures) had to await the development of stable superconducting materials capable of withstanding high currents and large magnetic fields. Although many materials — elements, alloys, ternary chalcogenides, and recently oxides — have been found to be superconducting, only a few of them have received attention for significant applications. This is based on three important parameters namelyTc, the transition temperature,Hc2, the upper critical field andJc, the critical current density.Tc andHc2 are considered intrinsic to the material, whileJc is influenced by the microstructure, and has to be optimised during fabrication of the material in the useful form. On these considerations, Nb-Ti, Nb3Sn and V3Ga have emerged as proven materials for significant applications while PbMo6S8 is still under development. Despite the fact that all these materials have to be used only at liquid helium temperatures on account of their lowTc, major developments have taken place in harnessing particularly the niobium alloys to produce superconducting magnets.

      Towards the end of 1986, a break-through has been achieved in the direction of raising theTc. Many ceramic oxides, notably Y1Ba2Cu3O7, have exhibitedTc in the vicinity of 100 K. These materials have also been shown to have highHc2, about 180 Tesla. Attempts are now being made to realise a highJc. It is too early to say whether such materials can be fabricated in suitable forms capable of carrying high currents.

      Among the major areas in which superconducting materials have so far been used, mention should be made of superconducting magnets for high energy particle accelerators, magnetohydrodynamic power generation, magnetic resonance imaging, and fusion research programmes. In other potential applications such as motors and magnetically levitated transportation, economic break-even has not been achieved, mostly on account of the need to use liquid helium. The discovery of the high temperature superconductors capable of operating at liquid nitrogen temperatures thus promises a revolution in electrical technology.

      The paper reviews the development and applications of superconducting materials, with reference to work being done in India.

    • Author Affiliations

       

      C V Sundaram1 T S Radhakrishnan1

      1. Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.