• Repeated yield drop phenomena as a cooperative effect

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Repeated yield drop; defects; cooperative behaviour; limit cycle solutions; nonlinear Langevin equations

    • Abstract


      We present a theoretical model of repeated yielding (ry) which reproduces many experimentally observed features, apart from showing how the temporal behaviour of the phenomenon emerges as a consequence of the cooperative behaviour of defects. We first consider the case of step-like creep curves. Our model leads to a coupled set of nonlinear differential equations which admit limit cycle solutions, and thence jumps on the creep curve. Approximate closed form solutions for the limit cycles and the steps on the creep curve are obtained. The model is then extended to the constant strain rate experiment by including the machine equation. The temporal ordering ofry is shown to follow, as well as several other features characteristic ofry. Chaotic flow is also exhibited: the model has a sequence of period-doubling bifurcations with an exponent equal to that of the quadratic map. Finally, we have analysed the fluctuations during the onset ofry using nonlinear Langevin equations. Fluctuations in the periodic (ry) phase are also investigated. We conclude thatry is another example of a dissipative structure.

    • Author Affiliations


      G Ananthakrishna1

      1. Materials Science Laboratory, Reactor Research Centre, Kalpakkam - 603 102, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.