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ABSTRACT 

The hydromagnetics of a linear, steady, axisymmetric flow of ah 
electrically cottducting homogeneous fluid eonfined between two identical 
rotating electrically insulatod parallel plates aro analysed fora  free shear 
layer situation wken a2>~ E -1~3 whero a ~ is the rotational magnetic 
interaction parametor and E is the Ekman numbeL A few cases involving 
subtle changes of the imposod azimuthal velocity bouudary condition are 
solv~d to elucidate the meridional electric curront flow. 

I .  INTKODUCTION 

KNOWLEDGE of hydromagnetic boundary layers in rotating flows plays ah 
important tole in the understanding of various astrogeophysical flows. 
Vempaty and Loper 1 have analysed the side waU hydromagnetic boundary 
layers in a steadily rotating elr insulated cylindrical container 
using the singular perturbation tr The analysis covered completely 
the two parametric ranges of the magnetic interaction parameter, ~~ ( =  oI~ 2] 
2p~2) which measures the ratio betwer the magnetic force and the Coriolis 
force. If E ( =  v]~2L ~) denotes Ekman number which measures the rafio 
between the viscous and Coriolis force, it was shown that all the vertical 
shear layers that occur for ~ 2 ~  E-X~a merge togr to forro a single layer 
as a~--->E -1~3, and this layer has a thickness 0 (Er4~ -ir2) for ~~>~E -11a. 
The rotational forces br unimportant in this extreme range. 

In this paper, we shall choose a simple free shear layer situation (see 
section 2) and analyse for ~~ ~ E -113 the hydromagnetics in various regions 
of interest with a special emphasis on the vertical shear layer structure. 

*A part of the Ph.D. Dissertation submitted to Florida State University, Tallahassee, 
USA. 
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In section 2, we give a description of the problem and its mathemati- 
cal formulation. The analysis of the various regions of flow is given in 
section 3, and finally the eomments and conclusions appear in section 4. 

2. MATHEMATICAL FORMULATION 

The geometry of the free shear layer situation considered here is exactly 
the same as that considered by Greenspan.'-' Cons ide ra  condueting fluid 
cortfined between two electrically insulated identical parallel pintes sepa- 
rated by a distartce L and rotating uniformly about the axis of symmetry with 

- +  

ah angular velocity ~ under the influence of a uniform magnetic field applied 
in the same direction as the angular velocity vector. Ah inner disc of 
radius R attached to each plate can spin independently. Fluid motions 
away from the state of solid body rotation are produced by imposing a small, 
steady perturbation in angular velocity d2 on the bot tom inner dise, and 
• cg2 (the plus sign corresponds to the "symmetric case " and the minus 
sign the "antisymmetric case ") on the upper inner dise (see figure 1). 

Under the assumptions that the Rossby number and the magnetic 
Reynolds number are small, the non-dimensional governing equations for 
the steady state situation considered above ate the same as equations (8) 
given in reference 1. Sinee we are mainly interested in regions E and 
F [That is regions near r = a ( =  R / L )  where r is the non-dimensional radial 
distance, and a is the aspect ratio], the curvature terms can be neglected 
in the above-said equations. The equations then become, 

2vz  "= 2a ~ ~zz - -  E W" ~b (l) 

.,, IoL 
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Figure 1. A diagram showing the various regions of flow in the concentric disc f r e e  s h e a r  

layer configuration. The boundaries whose angular velocities are nol marked in the figme a t e  

supposed to be rotating w i t h  a n g u l a r  velocity ~. 1: Interior re#on; H: Ekman-Hartmann 
layer; E: Vertical boundary iayer; F: Ekman-Hartmann extension of the vertical boundary 
layer. 
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2~bz = 2a ~ bz + E V  2 v 

V z +  V 2 b = O  

(2) 

(3) 

where a subscript denotes differentiation, and 

~x ~ + ~2  and x = a -- r. 

Here, v denotes the azimuthal velocity, b the azimuthal magnetic field which 
also serves a s a  steam function for the electric currents, ~b the steam func- 
tion for the meridional flow, a 2 the magnetic interaction parameter, and 
E the Ekman number. 

The boundary conditions on velocity field may be written as 

v = f (x)  = r3 (x) a t z = 0  

v = :k f (x) = + r~ (x) a t z = l  

~ = 0  at z = O ,  1 

where �91 is a unit step function. Since the plates are electrically insulated, 
the electric current flux normal to the boundaries is zero and hence by 
Ampere's law 

b = 0  a t z = 0 , 1 .  

From (2)-(3) it directly follows that the thickness of the horizontal 
boundary layer (hereafter referred as Ekman-Hartmann layer) is O (M -1) 
and the thickness of the vertical layer is O (M -112) where M i s  the Hart- 
mann number given by M =  E-lJ2a.  It also follows from (1)-(3) that 
in both the layers 

v = O (1), b = O (E t''2 ~-1), and ~z = ~-'. 

Hence, the Coriolis torro is insignificant to dominant order in the zonal 
momentum equation (2). As a result, equations (2) and (3), contalning 
only the variables v and b dr from the first �9 and they may 
be written as, 

where 

v x z  + Vzz + Mbz  ---- 0 

~= + l;= + M~~--O 

(4) 

(5) 

�91243 
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We may rewrite the above equations as 

R x x  + Rzz + M R z  = 0 

Sza: + Szz  - -  M S z  = 0 
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(6) 
(7) 

where 

R = ~ + b  ana s = v - b .  (8) 

The boundary conditions on R and S become 

R=S=rf(x)  x > 0  } 
R = S = 0  x < 0  at z = 0  (9) 

A t  z =  l R = S = { r f ( x )  Sym. x > 0  
-- r f (x) Antisym. x > 0 (10) 

At z = l  R = S = 0  x <  0. 

Equafions (6) and (7) should now be solved subject to boundary conditions 
(9) and (10). 

Since the boundary layer contributions vanish at the edge of the 
boundary layers, the unstretched boundary layer co-ordinate may be allowed 
to range between + oo artd --oo.  The problem now becomes amenable 
to Fourier transformation in x. 

3. MATHEMATICAL ANALYSIS 

Define the Fourier integral tansform pair for any variable ~ as 
+ o o  

ff(~).=-- .[ q ~ ( x ) . e x p ( - - i r  
- - o o  

• +7 (x) = 2~ _~ ~; (~)" exp (i~x) a~. 

Fourier transformation of equafions (6) and (7) gives us 

Rzz  -1- M-~z - -  ~~ R =- 0 

g~z - MCSz - ~" rS = O. 

ANTISYMMETRIC CASE 

SOLUTION FOR THE VERTICAL BOUNDARY LAYER (REGION E) ;  

The solution of (11) subjeet to boundary eondition (9)-(10) is 

(II) 

02) 

f (r [exp {-- (M/2) (1 -- z)} sinh 0tz) + exp {-- (34/.2) z}. sinh tt (1 -- z)] 

(13) 
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where 

sinee V >~1, sinh tz ~- o". Therefore (13) may be written as 

h ~ -- f ( r  exp {MI2 (1 -- z)} [exp {--q (1--z)} -- exp {-- q (1 + z)}] 

+ f (r exp (-- 34"_/2) [exp (-- q -- exp --{/~ (2 + z)}l. (14) 

Away ffom regions of thickness O ( M - 0  near the walls z----0, 1 (i.e., in 
region E), only the first term of  (14) is significant. Therefore,  in region E 

R --  a exp ((M/2)2~ri (1 --  z)) f 

- -OO 

exp (ix•. exp {-- q (1 -- z)} d~. 
�91 

(15) 

where f (r is replaced by a/ir with the understanding that the solutiorts are 
sought  for x/-~ 1 and the pole due to ~ ~ 0 contributes only to the region 
x > 0. (a should be replaced by r in the final solutions to obtain a proper 
representation of  the flow dynamics.) Followirtg the method used by 
Hunt  and Williams a to solve almost a similar integral as (15), (the only diffe- 
rence is that  the pole ~: ~ 0 contributes only to the region x > 0 in our 
case, while it contributes to both  the regions x > 0 and x <  0 in their case) 
we write 

2r = M sinh (0 + i~b). 

Then (15) becomes 

a / .  
[M (1 --z)/2] J exp ( �89 Mt cosh 0) coth (0 + i~b) dO R -~ --2~riexp 

- - O O -  { 

(16) 

where t 2 = (1 --  z) ~ + x 2 and tan ~b = x/(1 --  z). Evaluating the contributio¡ 
of the pole 0 ---- - - i ~  for the region x > 0 ,  we have 

,-1-oo 

a f R - -- 2~i exp [M (1 --z)/2] exp (Mt]2 cosh 0) coth (0 + i~) dO 

- -  a3 (~k) (17)  

where 3 is the heavy-side unit  step function. Evaluation of (17) gives, 

a cos ~ [erfc {-- (Mt) 1'~ sin ~/2} -- 28 (0)1 -- a8 (~). (18) 
R = 2 cos (~/2) 
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Equation (18) is valid for aU ~b. Since in region E, x = O (M -xr~) and 
(1  - -  z) >~ x, we have 

cos ,b = cos 442 ~- 1, 

Therefore 

a 
R =  

2 

Similarly 

X 
t -~ (1 -- z)i sin (~b/2) ~_ ~ (1 -- z) 

a z M a~-*x \ 
2 e r f ( 2  ([ -- z)f;Q 

a o (~~) S ~ ~ + ~ erf 

From (19)-(20) and by (8) we get 

a . / ~ '  ~ ,  _ 4 ~  ~ ~ ' ~  v ----- �91161 erI~, 2 - -~ i~ )  (1 -- z) ff~) 

a ~ [ M ~ x \  ~ erf (2  Mi  x ~'[ 

(19) 

(20) 

(21) 

(22) 

These solutions contain the combination of interior and boundary layer 
contributions. The boundary layer contributions can be obtained by 
subtracting the respective interior solutions. Taking the limit as x ~ c~ 
ir is seen from (21)--(22) that v ---- 0 and b ---- -- r (a is replaced by r to get 
the correct representative solution) in the interior region L For x <  0, 
the interior solutions for both v and b ate zero as should be expected physi- 
cally from the nature of  the boundary conditions for x <  0. 

SOLUTION FOR THE REGION E l :  

fa the vicinity of z = 0, the first three terms in 04)  
Hence in region F1, we get 

are important. 

a e x p [ M ( 1 - - z ) / 2 ]  R ~- - -  2rr--i 

+oo 

f exp ( ix~) [exp {--/z (1 -- z)} - -  exp {--/~ (I+z}] d~ 

a e x p - - [ M z ] 2 ]  f exp ( i x ~  . exp (--/~z) d~. (23) 

The integrands of (23) are similar to the integrands of(15); we shall write the 
solution for (23) by inspection of (15) and its solution (18). 
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[2  a ( Ma'~x '~] R - ~ - -  + ~ e r f  2(1--z)X~2]J 

a M V 2 x  "~ 
+ e x p  (-- Me) [2  + ] e r f ( 2 ( 1  -bz) ~r21 

a / M a r  2 X "  "1 
+ exp(--  Mz)[~ + ~~f[ ~ ' - ) ]  

Since z -~  O (M-0 in the region under consideration, we may replace z 
with zero in the error functions occurring in the ¡ two terms and the 
error function in the last term may be replaced by 4- ~ ( +  x). [For x > 0, 
this is equivalent to + �91 ( +  x) and for x <  0 to - -8  ( - -x ] .  Finally we 
obtain 

R~-exp (-- Mz) [ 2 4- 28 (-4-x)] - -211 - - exp ( - -Mz) l e r f (Ma"x /2 )  

Similarly 

a a [M al~ x'x 
S = 2 + 5 erf~,-2z~2 ) .  (25) 

However, in the region Fa, since z .-. O (M -a) and x ,~ O (M-t), the order 
of M ~f~ x/z 1~2 is M 1~~ which is very large. Therefore, the error furtction in 
(25) can be replaced by 4- �91 (4-x). Hence 

S~-a  x > 0  

~- 0 x <  0. (26) 

This says that the variable S ( =  v -  b) does not have a boundary layer 
structure near z = 0. This does not mean that v and b cannot have boun- 
dary layer structures near z = 0. This boundary layer contributions for 
v and b can be directly obtained from (24) and (26). 

It is irtstructive to obtaia the solution of the Ekman-Hartmann layer 
region H, from (24) and (26). As x - +  oo we have 

R = v  + b = - - a  + 2aoxp(--  Mz) 

S = v - - b - - - a  

Hence 

v = a oxp (-- Mz) 

b ~ -- a + a ox'p(-- Mz) 
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which are the solutions for v and b in the iegion //~ for the antisylnmetric 
case when a i s  replaced by r. 

It  is now a routine matter to find the solutions for the region F~ at z = 1 
The analysis would show that  R does no t  possess a boundary  layer struc- 
tu te  near  z = 1 while S will have. 

The mathematical method being exactly the same, we shall now directly 
write down the solutions for the vertical shear layer region E for the sym- 
metric and mixed cases. The mixed case which is neither symmetric nor  
antisymmetric has the boundary  conditions. 

v = r 3 ( x )  at z = 0 ,  v = 0  at z = l  and 

b = 0  at z - - 0 , 1 .  

SOLUTION FOR REGION E IN THE SYMMETRIC CASE" 

a a / M l t ' 2 x x  a ( MXf2x_'~ 
v _~ 2 + 21 erft--2z'"~ ) - t -4  erf 2 (~ Z~-~,2] 

a / M 11e x \ a zMlt~ x,, 
b "~ 4 e'ft:~]-I . . . .  77") - a  erf(,~-2z-~'' ) 

SOLUTION FOR REGION E IN THE MIXED CASE: 

a a z M a t ~  
v ~_ 74 + 4 erf  t - -~~ . ,  

a a (Ml_,"x'~ 
- -  -- II erf b = -- 4 k 2z1~~ ] 

(27) 

(28) 

(29) 

(30) 

The boutldary 1ayer contributions ~ and �91 for x <  0 are the same as above. 
For x > 0 ,  these are 

a [Ml'~_x~t 
= -- ii erfc t--~x,~ j (31) 

a [ M  xlg" x" 
�91 = erfc ~ .  (32) 

ii # 

4. COMM~TS AND CONCLUSION$ 

Hrs t  wc would Iike to say a fcw words about  the cquations (4)--(7) 
and the solutions obmined.  These equations ate elliptic equations.  How- 
evcr, it may be sccn that  in the vertical shear layer, since ~/~x ~ ~/~�91 the 
equations (6)--(7) reduce to the parabolic equations,  

Rzx, + MRz  ------ 0 

S x x  - -  M S z  = O. 
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The solutions we obtained in section 3 for R and S in the side boun- 
dary layer are in fact the solutions of the above parabolic equations. Hence, 
the side boundary layer may be called a parabolic boundary layer. 

It may be seen from the solutions obtained here for the free shear layer 
region, that its essential dynamics ate the same as that of the side wall 
boundary layer analysed in reference (1) for a 2~, E-r3. This is in general 
true, and so the analysis of a suitable free shear layer situation may prove 
helpful in analysing eertain complicated boundary layer problems whieh 
demand a proper insight into the physieal situation. 

It is known from earlier worlO that the vertical shear in the azimuthal 
velocity of the Ekman-Hartmann layer gives rise to a radial electric current 
in that region artd hence by continuity to ah axial current irt the interior. 
In what follows, we shall discuss the circulation of this electric current 
flux in all the three cases considered in section 3. 

The electric current flow pattern for the antisymmetric, symmetric, 
and mixed cases is showrt schematically in figures 2-4. It may be seen 
from the solutions obtained, that for the antisymmetric case, half of the 
electric current flux pumped by the Ekmart-Hartmann layer /-L enters the 
region E, directly from regions F1 while the other half ertters through the 
comer region (see figure 2). 

In the symmetric case, the interior region itself can satisfy the boun- 
dary conditions at z = 0, 1 [follows directly from equations (27-28)] and 
henee there is no Ekman-Hartmann layer. The elect¡ current flow 
through the interior vanishes. However, the electric currents flow near 
the region x = 0 and are confirted to the boundary layer regions E artd F. 
The eler r cirr as four separate cells partitioned by x = 0 
and z = �89 (see figure 3). 

-Y2 

V-r : - r  V T : 0 

f l '!l 
r 

* B - '  "13- v 

Figure 2, A schematic diagram of the meridional electric curren~ flow in the antisymmetric 
case. The arrows indicate the electric current flux O (E~t2/a). 
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Figm-e 3. A schematic diagram of the meridional 
case. The arrows indicate the electric current flux O 

electric current flow in the symmetric 
( E l  l i/a). 

In the mixed case, since b = 0 at z = 0 by equation (32), the electric 
currents cannot directly enter into the region E. They enter into this region 
only through the comer region. ThJs result may also be understood physi- 
caUy, if we realise that the mixed case is a combination of symmetric and 
antisymmetric tases. In syrnmetric case the region F1 sucks electric currents 
from the region E, whJle in the antisymmetric case, the reverse happens. Hence, 
ir may be thought, that in the mixed case, the electric current can manage 
to enter the region, E only through the comer region. In fact, not only 

b, but also v i s  zero at z ,= 0. Tlais observation leads us to conclude (can 
be shown by analysis also 5) that the region F1 does not exist in this case. 

Having known v, the solution for the field variable ~ can be obtained 
from (1) in principle. As noted in reference (1), the solution for ~ involves 
resonance and is complicated and uniUuminating. However, we can 
draw certain conclusions regarding the circulation of mass flux from the 
order of magrtitude analysis. It follows from equation (1) that ~ ,,o 
O (E u~ ~3) in the regions, L / / a n d  F. Since ~ -~ O (a -2) in the region E, an 
intense circulation of mass flux O (~-~) takes place in this region. The 
interior mass flux being of very small magnitude need not be considere, al. 

Finally we shall summarise the results eommenting on the effect of 
magnetic field on a rotating flow, and explainJng briefly the major changes 
that ensue when the magrtetic interaction parameter becomes very large. 
I t i s  seca that the tlª of the boundary layers decrease as the magnetie 
field increases. Obviously, this is because, that, as the magnetic forces 
increase, the viscous forces have to increase to balance them. As a result, 
the thickness of the layer has to decrease. It is known from earlier w o r ~  
(and also can be seen from the magnitudes of ~ and b in the horizontal 
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M-~'2 
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Figure 4. A schematic diagram of the meridional electric current flow in the mixed case. 
The arrows indicate the electric current flux O {EXlZ,'a). 

boundary layer) that due to the presence of magnetic field, ah axial current 

is induced while the axial mass flux is inhibited. The side boundary layers 
that occur should be able to support this electric current flux as well as the 
mass flux pumped by the horizontal boundary layer. It was showll 1 that 
for a~~, E -1'3, in addition to two non magnetic layers (which ate exactly 
similar to the Stewartson's E va artd E ~14 layers that occur in a nonmagnetie 
rotating flow) which support the mass flux, there occur two hydromaglxetic 
layers to support the electric current. In all these layers the Coriolis forces 
ate important. However, a s a  2 ~ E-V ~ the magaetic, the viscous and the 
Coriolis forces assume the same magnitude a n d a s  a result ala the different 
layers merge together to form a single layer. For a ~ > E -1la the rota- 
tional forces become unimportant, and the essential dynamics of the single 
side layer are determined by a balance between the magaetic and viscous 
forces. This layer attains a parabolic structure characteristic of  strongly 
magnefie non rotational flows. 
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