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ABSTRACT

The hydromagnetics of a linear, steady, axisymmetric flow of an
electrically conducting homogeneous fluid confined between two identical
rotating electrically insulated parallel plates are analysed for a free shear
layer situation when a2>> E~13 where o2 is the rotational magnetic
interaction parameter and E is the Ekman number. A few cases involving
subtle changes of the imposed azimuthal velocity boundary condition are
solved to elucidate the meridional electric current flow.

1. INTRODUCTION

KNowWLEDGE of hydromagnetic boundary layers in rotating flows plays an
important role in the understanding of various astrogeophysical flows.
Vempaty and Loper! have analysed the side wall hydromagnetic boundary
layers in a steadily rotating electrically insulated cylindrical container
using the singular perturbation techniques. The analysis covered completely
the two parametric ranges of the magnetic interaction parameter, o (= ob?/
2p52) which measures the ratio between the magnetic force and the Coriolis
force. If E (= v/QL? denotes Ekman number which measures the ratio
between the viscous and Coriolis force, it was shown that all the vertical
shear layers that occur for a®< E-Y'3 merge together to form a single layer
as a2 — E-U3 and this layer has a thickness O (EYaV?) for %> E-V3,
The rotational forces become unimportant in this extreme range.

In this paper, we shall choose a simple free shear layer situation (see
section 2) and analyse for «*> E-¥3 the hydromagnetics in various regions
of interest with a special emphasis on the vertical shear layer structure,

* A part of the Ph.D. Dissertation submitted to Florida State University, Tallahassee,
USA.
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HYDROMAGNETIC FREE SHEAR LAYER FLOW 219

In section 2, we give a description of the problem and its mathemati-
cal formulation. The analysis of the various regions of flow is given in
section 3, and finally the comments and conclusions appear in section 4.

2. MATHEMATICAL FORMULATION

The geometry of the free shear layer situation considered here is exactly
the same as that considered by Greenspan.? Consider a conducting fluid
confined between two electrically insulated identical parallel plates sepa-
rated by a distance L and rotating uniformly about the axis of symmetry with

an angular velocity éunder the influence of a uniform magnetic field applied
in the same direction as the angular velocity vector. An inner disc of
radius R attached to each plate can spin independently. Fluid motions
away from the state of solid body rotation are produced by imposing a small,
steady perturbation in angular velocity €2 on the bottom inner disc, and
4 €Q (the plus sign corresponds to the *symmetric case ” and the minus
sign the ‘‘antisymmetric case ) on the upper inner disc (see figure 1).

Under the assumptions that the Rossby number and the magnetic
Reynolds number are small, the non-dimensional governing equations for
the steady state situation considered above are the same as cquations (8)
given in reference 1. Since we are mainly interested in regions E and
F [That is regions near r = a (= R/L) where r is the non-dimensional radial
distance, and a is the aspect ratio], the curvature terms can be neglected
in the above-said equations. The equations then become,
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Figure 1. A diagram showing the various regions of flow in the concentric disc free shear
layer configuration. The boundaries whose angular velocities are not marked in the figure are
supposed to be rotating with angular velocity £. I: Interior region; H: Ekman-Hartmann
layer; E: Vertical boundary layer; F: Ekman-Hartmann extension of the vertical boundary

layer.

A-7 April 77



220 SOMARAJU VEMPATY

2y = 202 by + EV?v )
v+ Vib=0 3
where a subscript denotes differentiation, and
22 22
V2=W, 372 and X=a—r.

Here, v denotes the azimuthal velocity, b the azimuthal magnetic field which
also serves as a steam function for the electric currents,  the steam func-
tion for the meridional flow, o the magnetic interaction parameter, and
E the Ekman number.

The boundary conditions on velocity field may be written as

v=f(x)=r(x) at z=0
v = 4 f (x) = + 18 (x) at z=1
=0 at z=0,1

where & is a unit step function. Since the plates are electrically insulated,
the electric current flux normal to the boundaries is zero and hence by
Ampere’s law

b=0 at z=0, 1.

From (2)-(3) it directly follows that the thickness of the horizontal
boundary layer (hereafter referred as Ekman-Hartmann layer) is O (M-Y)
and the thickness of the vertical layer is O (M~'%) where M is the Hart-
mann number given by M = E-12q, It also follows from (1)-(3) that
in both the layers

v=0(), b=O0(EYaY, and ¢y=a>2

Hence, the Coriolis term is insignificant to dominant order in the zonal
momentum equation (2). As a result, equations (2) and (3), containing
only the variables v and b decouple from the first equation and they may
be written as,

Vg + Vzz + Mb; =0 C))

sz + I;zz + My, = o)

where

S
fl
S
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We may rewrite the above equations as

Ryx + Ryz -+ MR, =0 (6)

Sx: +Szz —MSz‘:O (7)
where

R=v+b and S=v—b 8)
The boundary conditions on R and S become

R=S=1rf(x) x>0 L

R=S5=0 x< 0 } at z=0 ©)

_ e rf (x) Sym. x>0
Atz=1 R=S5= { —r f(x) Antisym. x>0 (10)
Atz=1 R=8§=0 x< 0.

Equations (6) and (7) should now be solved subject to boundary conditions
(9) and (10).

Since the boundary layer contributions vanish at the edge of the
boundary layers, the unstretched boundary layer co-ordinate may be allowed
to range between + oo and — oo. The problem now becomes amenable
to Fourier transformation in x.

3. MATHEMATICAL ANALYSIS

Define the Fourier integral tansform pair for any variable ¢ as
- +0o
$(§) = g ¢ (x) . exp (— iéx) dx

40 =9, "1 $(0- exp (£ dt.

Fourier transformation of equations (6) and (7) gives us
Ry + MR, — £2R=0 (11)
S — MS, — 25 =0. (12)
ANTISYMMETRIC CASE
SOLUTION FOR THE VERTICAL BOUNDARY LAYER (REGION E);
The solution of (11) subject to boundary condition (9)~(10) is

R= F () lexp {— (M]2) (1— z)} sinh (uz) + exp {— (M/2) 2} - sinh p (1 — 2)]
= sinh p )
a3
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where

)

since p>1, sinh p ~ e#. Therefore (13) may be written as
R — F@exp{M2(1 — 2)} [exp {~p (1—2)} — exp {— p (1 + 2)}]
+ f (&) - exp(— Mz[2) [exp (— pz) —exp —{p 2 + 2)}].  (14)

Away from regions of thickness O (M) near the walls z=0, 1 (i.e, in
region E), only the first term of (14) is significant. Therefore, in region E

R~

—aexp (M) (1 — 2} [ exp(ixé) expf—p(l —2)
2mi f I3 dg.

—00

(15)

where f (£) is replaced by a/ié with the understanding that the solutions are
sought for x<< 1 and the pole dueto ¢ = Ocontributes only to the region
x >0. (a should be replaced by r in the final solutions to obtain a proper
representation of the flow dynamics.) Following the method used by
Hunt and Williams? to solve almost a similar integral as (15), (the only diffe-
rence is that the pole ¢ =0 contributes only to the region x >0 in our
case, while it contributes to both the regions x >0 and x< 0 in their case)
we write

2¢ = Msinh (8 + ).
Then (15) becomes

oo—i4
R o= — L exp[M(1-2)2) f exp ( — % Mt cosh 6) coth (8 + i) db
—o00- ¢
(16)
where 12 = (1 — 2)? 4 x? and tan ¢ = x/(1 — z). Evaluating the contribution
of the pole 6§ = — iy for the region x >0, we have
o0
a
R — s exp [M(1—-2)]2] f exp (M1/2 cosh 6) coth (8 -+ igs) db
—oo
— as () (17)

where 8 is the heavy-side unit step function. Evaluation of (17) gives,

a cosy

R=—3 s @) [erfe {— (Mu)"*sin ¢/2} — 28 ($)] — a8 (¢). (18)
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Equation (18) is valid for all 4. Since in region E, x = O (M~"%) and
(1 — 2) > x, we have

cosg ~cosPf2 =1, t=~(l—2),sin (Y2~ i-ﬁ_i—.é)

Therefore

a a M2 x
Rz =5 =5 et (yq ) 19)

Similarly
S=§ + def %’1—2;) (20)
From (19)-(20) and by (8) we get
- () (50 »
b=—[5 +3% erf(%’«zl—,’; + 4 erf(z(Miz);l,z)] @2)

These solutions contain the combination of interior and boundary layer
contributions. The boundary layer contributions can be obtained by
subtracting the respective interior solutions. Taking the limit as x — oo
it is seen from (21)—(22) that v =0 and b = — r(a is replaced by r to get
the correct representative solution) in the interior region I. For x< 0,
the interior solutions for both » and b are zero as should be expected physi-
cally from the nature of the boundary conditions for x< 0.

SOLUTION FOR THE REGION Fi:

In the vicinity of z =0, the first three terms in (14) are important.
Hence in region F, we get

R~ — 5‘:71. exp [M (1—2)/2]

]’” exp (ixg) [exp {— p (1 — zg)} — exp {— p(1+2)] d¢

*we_?SP,A.(EZ@
3

+ —2%1. exp—[Mz/2] f - exp (— pz) d¢. (23)

The integrands of (23) are similar to the integrands of (15); we shall write the
solution for (23) by inspection of (15) and its solution (18).
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R~ — [g + %erf(‘rzﬁﬂli—z:):-ﬂz)]
+oxp (M) [+ 5t (515 35m)

+exp (— M2)[§ + Gerf %1;?)]

Since z ~ O (MY in the region under consideration, we may replace z
with zero in the error functions occurring in the first two terms and the
error function in the last term may be replaced by 4+ 8 (& x). [For x >0,
this is equivalent to + 8 (4 x) and for x< 0 to — 8 (— x]. Finally we
obtain

R~exp (—Mz) [; + gS (+ x)] — g[l— exp (—Mz)]erf(M1‘2x/2)

—-g[ 1—exp (— Mz)] 24)
Similarly
~ 8, a Mz x
S5+ Jarf(Gom") 25)

However, in the region Fi, since z ~ 0 (M™) and x ~ O (M}), the order
of M*2x[z}2 is MY? which is very large. Therefore, the error function in
(25) can be replaced by 4 8 (4+x). Hence

S~a x>0
~0 x< 0. . (26)

This says that the variable S (= v — b) does not have a boundary layer
structure near z =0. This does not mean that » and b cannot have boun-
dary layer structures near z=0. This boundary layer contributions for
v and b can be directly obtained from (24) and (26).

It is instructive to obtain the solution of the Ekman-Hartmann layer
region H, from (24) and (26). As x ->oco we have

R=v+b=—a+2aexp(— M2)
S=v—b=ag
Hence
= aexp (— Mz)
b= — a+ aexp(— Mz)
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which are the solutions for v and b in the region H, for the antisymmetric
case when a is replaced by r.

It is now a routine matter to find the solutions for the region F, at z =1
The analysis would show that R does not possess a boundary layer struc-
ture near z = 1 while S will have.

The mathematical method being exactly the same, we shall now directly
write down the solutions for the vertical shear layer region E for the sym-
metric and mixed cases. The mixed case which is neither symmetric nor
antisymmetric has the boundary conditions.

v=r(x)atz=0,v=0at z=1 and
b=0at z=0,1.

SOLUTION FOR REGION E IN THE SYMMETRIC CASE:

v~ ;(zl + gerf M—;Z‘f,':) + Z erf (2—(—1%;2—);—1,—2) 7)

b derf (2-(-11‘52—22’)‘—1,-2) — 4 erf(%;z,gx) 28)
SOLUTION FOR REGION E IN THE MIXED CASE:

v~ -Z + Zerf (A%:Tf) 29)

be— 4 et (1‘;:“") (0)

The boundary layer contributions » and b for x< 0 are the same as above.
For x >0, these are

- 112

v — gerfc —1‘-42?,;‘) €])
-~ 112

b dafe »MZ—FQ—‘) (32)

4. COMMENTS AND CONCLUSIONS

First we would like to say a few words about the equations (4)7)
and the solutions obtained. These equations are elliptic equations. How-
ever, it may be seen that in the vertical shear layer, since d/ox > d/oz, the
equations (6)-(7) reduce to the parabolic equations,

sz - MSz =0,
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The solutions we obtained in section 3 for R and S in the side boun-
dary layer are in fact the solutions of the above parabolic equations. Hence,
the side boundary layer may be called a parabolic boundary layer.

It may be seen from the solutions obtained here for the free shear layer
region, that its essential dynamics are the same as that of the side wall
boundary layer analysed in reference (1) for a 2> E-¥3, This is in general
true, and so the analysis of a suitable free shear layer situation may prove
helpful in analysing certain complicated boundary layer problems which
demand a proper insight into the physical situation.

It is known from earlier work? that the vertical shear in the azimuthal
velocity of the Ekman-Hartmann layer gives rise to a radial electric current
in that region and hence by continuity to an axial current in the interior.
In what follows, we shall discuss the circulation of this electric current
flux in all the three cases considered in section 3.

The electric current flow pattern for the antisymmetric, symmetric,
and mixed cases is shown schematically in figures 2-4. It may be seen
from the solutions obtained, that for the antisymmetric case, half of the
electric current flux pumped by the Ekman-Hartmann layer H, enters the
region E, directly from regions F; while the other half enters through the
corner region (see figure 2).

In the symmetric case, the interior region itself can satisfy the boun-
dary conditions at z =0, 1 [follows directly from equations (27-28)] and
hence there is no Ekman-Hartmann layer. The electric current flow
through the interior vanishes. However, the electric currents flow near
the region x = 0 and are confined to the boundary layer regions F and F.
The electric currents circulate as four separate cells partitioned by x =0

and z = } (see figure 3).
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Figure 2. A schematic diagram of the meridional electric current flow in the antisymmetric
case. The arrows indicate the electric current flux O (EY%/a).
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Figure 3. A schematic diagram of the meridional electric current flow in the symmetric
case, The arrows indicate the electric current flux O (El/%/q).

In the mixed case, since b=0atz=0 by equation (32), the electric
currents cannot directly enter into the region E. They enter into this region
only through the corner region. This result may also be understood physi-
cally, if we realise that the mixed case is a combination of symmetric and
antisymmetric cases. In symmetric case the region F; sucks electric currents
from theregion E, whilein the antisymmetric case, the reverse happens. Hence,
it may be thought, that in the mixed case, the electric current can manage
to enter the region, E only through the corner region. In fact, not only

b, but also v is zero at z = 0. This observation leads us to conclude (can
be shown by analysis also®) that the region F; does not exist in this case.

Having known v, the solution for the field variable ¢ can be obtained
from (1) in principle. As noted in reference (1), the solution for  involves
resonance and is complicated and unilluminating. However, we can
draw certain conclusions regarding the circulation of mass flux from the
order of magnitude analysis. It follows from equation (1) that ¢ ~
O (EY2 o) in the regions, I, H and F. Since ¢ ~ O (¢~%)in the region E, an
intense circulation of mass flux O (%) takes place in this region. The
interior mass flux being of very small magnitude need neot be considered.

Finally we shall summarise the results commenting on the effect of
magnetic field on a rotating flow, and explaining briefly the major changes
that ensue when the magnetic interaction parameter becomes very large.
It is seen that the thickness of the boundary layers decrease as the magnetic
field increases. Obviously, this is because, that, as the magnetic forces
increase, the viscous forces have to increase to balance them. As a result,
the thickness of the layer has to decrease. It is known from earlier works
(and also can be seen from the magnitudes of ¢ and b in the horizontal
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Figure 4. A schemaiic diagram of the meridional electric current flow in the mixed case.
The arrows indicate the electric current flux O (Eli%/q).

boundary layer) that due to the presence of magnetic field, an axial current

is induced while the axial mass flux is inhibited. The side boundary layers
that occur should be able to support this electric current flux as well as the
mass flux pumped by the horizontal boundary layer. It was shown! that
for o2 E-13, in addition to two non magnetic layers (which are exactly
similar to the Stewartson’s E¥'3 and EY4 layers that occur in a nonmagnetic
rotating flow) which support the mass flux, there occur two hydromagnetic
layers to support the electric current. In all these layers the Coriolis forces
are important. However, as @2 — E-1'3 the magnetic, the viscous and the
Coriolis forces assume the same magnitude and as a result all the different
layers merge together to form a single layer. For a? > E-13 the rota-
tional forces become unimportant, and the essential dynamics of the single
side layer are determined by a balance between the magnetic and viscous
forces. This layer attains a parabolic structure characteristic of strongly
magnetic non rotational flows.
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