ON ALMOST CONTACT METRIC HYPERSURFACE OF A KAHLER MANIFOLD

B. B. SINHA AND I. J. P. SINGH

(Department of Mathematics, Banaras Hindu University, Varanasi 221005)

MS Received 19 February 1974

ABSTRACT

We have studied the normality of an almost contact metric hypersurface of a Kahler manifold. Quasi-umbilical and umbilical properties have also been studied.

1. INTRODUCTION

An n-dimensional real differentiable manifold M_n of differentiability class C^∞ is said to be an almost contact manifold with the structure $- (F, T, A)$ if

$\tilde{X} + X = A(X)T; \quad \tilde{X} \overset{\text{def}}{=} F(X)$

(1.1)

where F is a linear, vector valued function, A is a 1-form and T is a C^∞ vector field in M_n.

From (1.1), we have

(a) $\text{rank}(F) = n - 1$, (b) $A(T) = 1$, (c) $T = 0$, (d) n is odd say $2m + 1$, (e) $A(\tilde{X}) = 0$, for arbitrary vector field X.

(1.2)

An almost contact manifold M_n is said to be an almost contact metric manifold if a Riemannian metric g satisfies

$g(\tilde{X}, \tilde{Y}) = g(X, Y) - A(X)A(Y)$

(1.3)

for arbitrary vector field X, Y in M_n. The structure $- (F, T, A, g)$ is called an almost contact metric structure. If N be the Nijenhuis tensor of F:

$N(X, Y) = [\tilde{X}, \tilde{Y}] + [X, Y] - [\tilde{X}, Y] - [X, \tilde{Y}]$

(1.4)
An almost contact manifold is said to be normal if
\[N(X, Y) + dA(X, Y) = 0. \] (1.5)

Let \(K \) be the curvature tensor in \(M_n \). The manifold \(M_n \) is said to be of constant sectional curvature if
\[\mathcal{K}(X, Y, Z, U) = k \{ g(X, U)g(Y, Z) - g(Y, U)g(X, Z) \}, \] (1.6)
where \(\mathcal{K} \) is the Riemannian curvature tensor of type \((0, 4)\) in \(M_n \).

2. Almost Contact Metric Hypersurface

Let us assume that \(M_{n+1} \) be a Kahler manifold with the structure \((J, G)\).

Then
\[J(J(\tilde{X})) = -\tilde{X} \] (2.1)
\[G(J\tilde{X}, J\tilde{Y}) = G(\tilde{X}, \tilde{Y}) \] (2.2)
\[(E\tilde{X}J)(\tilde{Y}) = 0 \] (2.3)

for arbitrary vector fields \(\tilde{X}, \tilde{Y} \) in \(M_{n+1} \), where \(E \) is a Riemannian connexion in \(M_{n+1} \). Let \(M_n \) be a hypersurface of \(M_{n+1} \) with \(B \) as its Jacobian map.

Then
\[G(BX, BY) = g(X, Y) \] (2.4)
where \(g \) is the induced metric of \(M_n \). If \(D \) is the induced Riemannian connexion on \(M_n \), we have
\[E_{\tilde{X}}BY = BD\tilde{X}Y + h(X, Y)M \] (2.5)
\[E_{\tilde{X}}M = -BHX, \]
where \(h \) is second fundamental form, \(M \) is a unit normal vector to \(M_n \) and \(H \) is the third fundamental tensor:
\[g(HX, Y) = h(X, Y). \]

The Gauss and Codazzi equations are given by
\[\mathcal{K}(BX, BY, BZ, BU) \]
\[= \mathcal{K}(X, Y, Z, U) - h(X, U)h(Y, Z) + h(X, Z)h(Y, U) \] (2.7)
\[\mathcal{R}(BX, BY, BZ, M) = (D_xh)(Y, Z) - (D_yh)(X, Z) \] (2.8)
where \(R \) is the Riemannian curvature tensor of type \((0, 4)\) with respect to the connexion \(E \) in \(M_{n+1} \).

If there exist two functions \(\alpha \) and \(\beta \) and a 1-form \(u \) on a hypersurface \(M_n \) such that
\[
h(X, Y) = \alpha g(X, Y) + \beta u(X) u(Y),
\]
\(M_n \) is said to be quasi-umbilic in the normal direction \(M \). In particular, if \(\alpha \) vanishes identically \(M_n \) is said to be cylindrical and if \(\beta \) vanishes identically \(M_n \) is said to be umbilical.

Let us now suppose that \(M_n \) is an almost contact metric hypersurface with the structure \(- (F, T, A, g)\) of the Kahler manifold with the structure \(- (J, G)\). Then we have
\[
J(BX) = B\tilde{X} + A(X)M
\]
\[
J(M) = -BT
\]
\[
(D_xA)(Y) = -h(X, \tilde{Y})
\]
\[
(D_xF)(Y) = -h(X, Y)T + A(Y)HX.
\]

If we define
\[
'F(BX, BY) = G(JBX, BY)
\]
\[
'F(X, Y) = g.(\tilde{X}, Y),
\]
we have
\[
'F(BX, BY) = G(JBX, BY) = G(B\tilde{X}, BY) = g(\tilde{X}, Y) = 'F(X, Y).
\]

Theorem 2.1. In order that an almost contact metric hypersurface \(M_n \) in a Kahler manifold \(M_{n+1} \) be normal, it is necessary and sufficient that \(F \) and \(H \) commute.

Proof: Let us consider
\[
N(X, Y) + dA(X, Y)T
\]
\[
= (D_xF)(Y) - (D_yF)(X) + \overline{(D_yF)(X)} - \overline{(D_xF)(Y)}
\]
\[
+ \{(D_xA)(Y) - (D_yA)(X)\} T.
\]

Substituting (2.13) in the right hand side of (2.15 a), we get
\[
N(X, Y) + dA(X, Y)T = A(Y)\{H\tilde{X} - \overline{HX}\} - A(X)\{H\tilde{Y} - \overline{HY}\}
\]
If M_n is normal then from (1.5) and (2.15b), we have

$$A(Y)\{H\bar{X} - \bar{H}X\} - A(X)\{H\bar{Y} - \bar{H}Y\} = 0,$$

from which

$$A(Y)\{h(\bar{X}, Z) + h(X, \bar{Z})\} - A(X)\{h(\bar{Y}, Z) + h(Y, \bar{Z})\} = 0$$

for arbitrary vector field X, Y, Z and consequently

$$h(\bar{X}, Z) + h(X, \bar{Z}) = vA(X)A(Z)$$

v being a certain function. By contraction we have from this equation that $v = 0$. Thus

$$h(\bar{X}, Y) + h(X, \bar{Y}) = 0$$

or

$$H\bar{X} - \bar{H}X = 0 \quad (2.15c)$$

which shows that F and H commute. Conversely if F and H commute then from (2.15b), we get (1.5). Hence M_n is normal.

Theorem 2.2. In order that F and H commute it is necessary and sufficient that T be a Killing vector or that the tensor field h satisfies

$$h(X, Y) = A(X)A(Y)h(T, T) + h(\bar{X}, \bar{Y}). \quad (2.16)$$

Proof: Commutation of F and H yields

$$h(\bar{X}, Y) + h(X, \bar{Y}) = 0 \quad (2.17)$$

which by virtue of (2.12) gives

$$(D_xA)(Y) + (D_yA)(X) = 0.$$

Hence T is a Killing vector. Conversely if T is a Killing vector (2.17) holds. Barring Y in (2.17) and using (1.1), we get

$$h(\bar{X}, \bar{Y}) - h(X, Y) + A(Y)h(X, T) = 0. \quad (2.18)$$

Interchanging X and Y in the above and subtracting the resulting expression we get

$$A(X)h(Y, T) - A(Y)h(T, X) = 0.$$
which by putting \(Y = T \) gives
\[
h(X, T) = A(X) h(T, T). \tag{2.19}
\]
Substituting (2.19) in (2.18) we get (2.16). It is easy to show that (2.16) gives (2.17).

Remark: \(M_n \) is minimal hypersurface of \(M_{n+1} \) if and only if \(h(T, T) = 0 \) because by contraction (2.16) we find that the trace of \(H \) is equal to \(h(T, T) \).

Theorem 2.3. A normal almost contact metric hypersurface \(M_n \) of constant sectional curvature in a Kahler manifold \(M_{n+1} \) of constant holomorphic sectional curvature is quasi-umbilical.

Proof: If a Kahler manifold is of constant holomorphic sectional curvature we have
\[
'R(BX, BY, BZ, BU) = -\frac{k}{4} [g(X, U)g(Y, Z) - g(Y, U)g(X, Z) + 'F(X, U) \times 'F(Y, Z) - 'F(Y, U) 'F(X, Z) - 2'F(X, Y) 'F(Z, U)]
\]
Putting this and (1.6) in Gauss characteristic equation (2.7), we get
\[
(k_2 - k_1) [g(X, U) g(Y, Z) - g(Y, U) g(X, Z)]
+ k_2 ['F(X, U) 'F(Y, Z) - 'F(Y, U) 'F(X, Z) - 2'F(X, Y) 'F(Z, U)]
= h(Y, U) h(X, Z) - h(X, U) h(Y, Z). \tag{2.20}
\]
If \(M_n \) is normal it will satisfy (2.19). Putting \(T \) for \(Y \) and \(Z \) in (2.20) and using the fact that \('F(X, T) = 0 \), we have
\[
(k_2 - k_1) [g(X, U) - A(X) A(U)]
= h(T, U) h(T, X) - h(T, T) h(X, U), \tag{2.21}
\]
which by virtue of (2.19) gives
\[
h(X, U) = a g(X, U) + \beta A(X) A(U)
\]
where
\[
a = \frac{k_1 - k_2}{h(T, T)} \quad \text{and} \quad \beta = h(T, T) - a.
Thus M_n is quasi-umbilical.

Corollary 2.1. Under the hypothesis of the Theorem 2.3, the hypersurface M_n is cylindrical if and only if $k_1 = k_2$.

Theorem 2.4. An umbilical almost contact metric hypersurface M_n in a Kahler manifold M_{n+1} is normal.

Proof: An almost contact metric hypersurface is normal if and only if (2.17) holds. From (1.3), we have

$$g(\tilde{X}, Y) + g(X, \tilde{Y}) = 0.$$

If M_n is umbilical above equation gives

$$h(\tilde{X}, Y) + h(X, \tilde{Y}) = 0$$

that is (2.17) holds. Thus we have the statement.

Corollary 2.2. In an umbilical almost contact metric hypersurface M_n in a Kahler manifold M_{n+1}, we have

$$(D_x'F)(Y, T) - (D_y'F)(X, T) = 0.$$

Proof: If M_n is umbilical then from (2.13), we get

$$(D_xF)(Y) = -ag(X, Y)T + aA(Y)X.$$

Interchanging X and Y and subtracting the result from above we get

$$(D_xF)(Y) - (D_yF)(X) = a\{A(Y)X - A(X)Y\}$$

which gives

$$(D'F)(Y, Z) - (D'F)(X, Z) = a\{A(Y)g(X, Z) - A(X)g(Y, Z)\}.$$

Putting $Z = T$, we have the result.

Theorem 2.5. An umbilical almost contact metric hypersurface, whose second fundamental form h satisfies $h(T, T) = -1$ in a Kahler manifold, admits $'F$ as a conformal Killing tensor whose associated 1-form is A.

Proof: From (2.3) we see that $'\tilde{F}$ is covariant constant with respect to the Riemannian connexion E. Using this fact and (2.5) in the derivative of (2.14) with respect to E, we get

$$(D_x'F)(Y, Z) = h(X, Y)'\tilde{F}(M, BZ) - h(X, Z)'\tilde{F}(M, BY).$$

(2.22)
Using (2.11) in the definition of $\tilde{\mathcal{F}}$, we see that
\[
\tilde{\mathcal{F}}(M, BX) = - A(X).
\]
Therefore (2.22) becomes
\[
(D_{X'}F)(Y, Z) = - h(X, Y) A(Z) + h(X, Z) A(Y).
\]

If the hypersurface is umbilical and $h(T, T) = -1$, (2.23) reduces to
\[
(D_{X'}F)(Y, Z) = g(X, Y) A(Z) - g(X, Z) A(Y).
\]
Interchanging X and Y in the above expression and adding the result to the above we get
\[
(D_{X'}F)(Y, Z) + (D_{Y'}F)(X, Z)
= 2A(Z) g(X, Y) - A(X) g(Y, Z) - A(Y) g(X, Z)
\]
which shows that \mathcal{F} is a conformal Killing tensor.

REFERENCE