ON THE HYPERNUCLEI RESONANT STATES
$^\Lambda$Li6, $^\Lambda$He$^5^*$ AND $^\Lambda$Be$^9^*$

BY N. K. RAO AND M. S. SWAMI‡
(Tata Institute of Fundamental Research, Bombay-5, India)

AND

A. GURTU AND M. B. SINGH
(Physics Department, Panjub University, Chandigarh-14, India)

Received August 14, 1969
(Communicated by Dr. R. R. Daniel, F.A.S.C.)

ABSTRACT

An attempt has been made to detect narrow resonant states of $^\Lambda$He$^5^*$ (I = 2), $^\Lambda$Li6 and $^\Lambda$Be$^9^*$ (I = 1) from amongst a sample of 128 uniquely identified $^\Lambda$H4 and 195 uniquely identified $^\Lambda$He5 hypernuclei produced by stopping K-mesons in a nuclear emulsion stack. From the experimental data presented, it is concluded that the production of any of these resonant states is not appreciable; upper limits of 20% and 15% are set for the proportion of $^\Lambda$He5 resulting from the decay of $^\Lambda$Li6 and $^\Lambda$Be$^9^*$ respectively.

1. INTRODUCTION

GAJEWSKI et al.¹ and Bohm et al.² have established the stability of $^\Lambda$He6 against decay into $^\Lambda$He5 and a neutron; the binding energy of $^\Lambda$ in $^\Lambda$He6 is 4.09 ± 0.27 MeV. Assuming charge symmetry, the binding energy of $^\Lambda$ in the mirror hypernucleus $^\Lambda$Li6 should be nearly the same. A comparison of the energy states of He5 and Li5 suggests that $^\Lambda$Li6 should be unstable and decay into $^\Lambda$He5 a proton; the Q-value for the reaction is ~ 1 MeV. The question of the existence of a particle stable $^\Lambda$Li6 hypernucleus has been investigated by Coremans et al.³; the evidence seems to be negative for a type of decay mentioned above. Thus, $^\Lambda$Li6, if formed in any interaction, is expected⁴ as a narrow p-wave resonance in $^\Lambda$He5-p rest system.

$^\Lambda$He$^5^*$ (I = 2) hypernucleus is also expected to be unstable, decaying into $^\Lambda$H4 and a proton. The possibility of such a system existing as a resonance in $^\Lambda$H4-p system was considered by Dalitz and Levi-Setti⁴ but since

‡Now at Physics Department, Aligarh Muslim University, Aligarh, India.

32
On the Hypernuclei Resonant States $^\Lambda Li^6$, $^\Lambda He^5*$ and $^\Lambda Be^9*$

other members of this I-spin multiplet have not been discovered it is difficult to predict the Q-value of this decay; however, it is expected to be about a few MeV.

The existence of $^\Lambda Be^9$ and $^\Lambda Li^9$ have been confirmed by various authors. The Λ-binding energies in these isobaric systems as obtained by Bohm et al. are 6.68 ± 0.04 and 8.25 ± 0.13 MeV respectively. This difference in B_Λ is attributed to different I-spin values for these systems: $^\Lambda Be^9$ belongs to $I = 0$ and $^\Lambda Li^9$ to $I = 1$ multiplet. Along with $^\Lambda Li^9$ the other members of the triplet are $^\Lambda B^6$ and $^\Lambda Be^9*$. The lowest level of $^\Lambda Be^9*$ is unstable relative to $^\Lambda He^5$-He4 and is expected to show up as a sharp resonance at about 12 MeV5 in the Q-value distribution of the decay products.

A search for $^\Lambda Li^6$ and $^\Lambda Be^9*$ hypernuclei as resonant states in $^\Lambda He^5$-p and $^\Lambda He^5$-He4 systems was made by Goodhead and Evans and Frodeson et al. but as the sample of events used in these investigations was small, it was not possible to draw definite conclusions as to whether or not such systems exist. No investigation on the possible existence of $^\Lambda He^5*$ ($I = 2$) system has been reported so far in literature.

In view of the importance of the problems outlined above, we have investigated them using a large sample of mesic hypernuclei. For this purpose, hypernuclei produced in an emulsion stack exposed to the stopping K$^-$-beam of the proton synchrotron at CERN was used. The details of the stack as well as the kinematic analysis of mesic decay of hypernuclei has been described by Chaudhari et al. Out of a sample of 1,312 examples of π^--mesic hypernuclei obtained in the stack, 541 were uniquely identified. The details of hypernuclei used in this investigation are summarised in Table I.

2. Search for the Resonant States of $^\Lambda He^5*$ ($I = 2$), $^\Lambda Li^6$ and $^\Lambda Be^9*$ ($I = 1$) Hypernuclei

These resonant states are unstable and immediately ($\ll 10^{-18}$ sec.) decay according to the schemes given below:

\[^\Lambda He^5* \rightarrow ^\Lambda H^4 + p + Q (\text{a few MeV}) \] (1)
\[^\Lambda Li^6 \rightarrow ^\Lambda He^5 + p + Q (\ll 1 \text{ MeV}) \] (2)
\[^\Lambda Be^9* \rightarrow ^\Lambda He^5 + He^4 + Q (\sim 12 \text{ MeV}) \] (3)

In order to detect their presence we have to study the Q-value distributions for the respective schemes. For this purpose we have measured Λ^4.
the residual ranges of the emitted hypernuclei and those of the tracks associated with them at the K⁻-absorption centers, and the space angles of these tracks with respect to the hypernuclei. The details of the procedures adopted for this purpose were similar to those described by Chaudhari et al.⁸

For two particles (1 and 2) the invariant mass M_{12} is given by

$$M_{12}^2 = (E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2$$

and the Q value of the reaction is

$$Q = M_{12} - M_1 - M_2$$

where $E_1, E_2, \vec{P}_1, \vec{P}_2$ and M_1, M_2 are the total energies, momenta and rest masses of particles 1 and 2 respectively.

No attempt was made to identify the prongs associated with the HFs (hypernuclei) at the K⁻ centers. The tracks associated with $^4\Lambda H$ and $^6\Lambda He$ were assumed to be due to protons for calculating the Q-values for reactions (1) and (2). For calculating the Q values for reaction (3) the tracks associated with $^6\Lambda He$ were assumed to be alpha-particles. The resulting Q-value distributions for the reactions (1), (2) and (3) are given by the solid histograms in Figs. 1 (a), 2 (a) and 3 (a) respectively. After taking into account the errors in measurement it is estimated that the error in Q-values of individual events is less than 1 MeV.

2.1. Background Estimation

To detect the significant production of these resonant states, it is essential to compare the measured Q-value distribution with the corresponding background Q-distribution. We have adopted two procedures for estimating the background Q-distribution; they are described below:

Procedure A.—In this method the momentum distributions of the hypernuclei and the associated particles, and the space angle distribution were fed into the computer as input data for a Monte-Carlo type of calculation. The program selects at random momenta of the hypernucleus and the second particle and the space angle between them from the respective distributions and calculates the Q-value. This procedure was repeated 3,000 times for each species of the hypernuclei investigated and the normalised background Q-value distributions are indicated by dashed line histograms in Figs. 1, 2 and 3.
On the Hypernuclei Resonant States $^6\text{Li}^\Lambda$, $^6\text{He}^\Lambda$ and $^9\text{Be}^\Lambda$

![Graphs showing Q-values for different combinations of hypernuclei and protons.](image)

Fig. 1. The solid line represents the experimental Q-distribution of $^4\Lambda$H and proton in their rest system. The dashed line refers to the background calculation obtained by Monte-Carlo procedure. (a) For the sample of 128 uniquely identified $^4\Lambda$H events. (b) For the 22 uniquely identified $^3\Lambda$H events treated as $^4\Lambda$H events. (c) For the 65 uniquely charge identified $^3\Lambda$H events and treated as a sample of $^4\Lambda$H events.
Fig. 2. The solid line represents the experimental Q-distribution of $^4\text{He}^+$ and proton in their rest system. The dashed line refers to the background calculation obtained from Monte-Carlo procedure. (a) For the sample of 195 uniquely identified $^4\text{He}^+$. (b) For the sample of 62 uniquely identified $^4\text{He}^+$ treated as $^3\text{He}^+$. (c) For the sample of 306 uniquely charge identified ^4He treated as $^3\text{He}^+$.

(a) $^{4}\text{He}^+ + p$ (141 combinations)
(b) $^{4}\text{He}^+ + p$ (484 combinations)

(c) $^{3}\text{He}^+ + p$ (706 combinations)
On the Hypernuclei Resonant States $^\Lambda\text{Li}^6$, $^\Lambda\text{He}^8*$ and $^\Lambda\text{Be}^9*$

Fig. 3. The solid line represents the experimental Q-distribution of $^\Lambda\text{He}^8$ and $^\Lambda\text{He}^9$ in their rest system. The dashed line refers to the background calculation obtained by Monte-Carlo procedure. (a) For the sample of 195 uniquely identified $^\Lambda\text{He}^8$. (b) For the sample of 62 uniquely identified $^\Lambda\text{He}^8$ treated as $^\Lambda\text{He}^9$. (c) For the sample of 306 uniquely charge identified $^\Lambda\text{He}$ treated as $^\Lambda\text{He}^9$.

Figure description:

- **Graph (a)**:
 - Title: $^\Lambda\text{He}^8 + \text{He}^9$ (354 Combinations)
 - Data points: Experimental, Monte-Carlo type
 - Q Value $(^\Lambda\text{He}^8 + \text{He}^9)$ MeV

- **Graph (b)**:
 - Title: $^\Lambda\text{He}^8 + \text{He}^9$ (108 Combinations)
 - Data points: Experimental, Monte-Carlo type
 - Q Value $(^\Lambda\text{He}^8 + \text{He}^9)$ MeV

- **Graph (c)**:
 - Title: $^\Lambda\text{He}^8 + \text{He}^4$ (514 Combinations)
 - Data points: Experimental, Monte-Carlo type
 - Q Value $(^\Lambda\text{He}^8 + \text{He}^4)$ MeV

Procedure B.—This procedure makes use of the fact that the range distributions of various HFs of a given charge are almost the same. Thus, for example, if the uniquely identified ΛHe^4 are assumed to be ΛHe^5 their momentum distribution will be identical to that obtained for unique ΛHe^5 HFs. If we now calculate the Q-values using such a sample of ΛHe^4 hypernuclei (assuming them to be ΛHe^5) and their associated tracks at the production center, the resulting distribution will essentially constitute a background as it does not contain any resonant state information pertaining to ΛHe^5. In a similar way, the background for reaction (1) was calculated assuming uniquely identified ΛH^3 to be ΛH^4 hypernuclei.

3. Experimental Results and Discussion

ΛHe^5 ($I = 2$) hypernucleus.—This hypernucleus may appear as a resonance in the $\Lambda\text{H}^4 + p$ rest system. The uniquely identified ΛH^4 events, which were 128 in all, listed in Table I were used and the resulting Q-distribution is given in Fig. 1 (a). The Q-distribution by procedure B was

<table>
<thead>
<tr>
<th>Species of HFs</th>
<th>Decay Mode</th>
<th>Number of events</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛH^3</td>
<td>$\pi^- + \text{He}^3$</td>
<td>12</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>\quad</td>
<td>$\pi^- + \pi^+ + n^2$</td>
<td>10</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>ΛH^4</td>
<td>$\pi^- + \text{He}^4$</td>
<td>111</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>\quad</td>
<td>$\pi^- + \text{H}^1 + \text{H}^3$</td>
<td>16</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>\quad</td>
<td>$\pi^- + \text{H}^2 + \text{H}^2$</td>
<td>1</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>$\Lambda\text{H}^3,4$</td>
<td>\ldots</td>
<td>65</td>
<td>Uniquely charge identified</td>
</tr>
<tr>
<td>ΛHe^4</td>
<td>$\pi^- + \text{H}^1 + \text{He}^3$</td>
<td>60</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>\quad</td>
<td>$\pi^- + \text{H}^1 + \text{H}^1 + \text{H}^2$</td>
<td>2</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>ΛHe^5</td>
<td>$\pi^- + \text{H}^1 + \text{He}^4$</td>
<td>195</td>
<td>Uniquely identified</td>
</tr>
<tr>
<td>$\Lambda\text{He}^4,5$</td>
<td>\ldots</td>
<td>306</td>
<td>Uniquely charge identified</td>
</tr>
</tbody>
</table>
obtained by using 22 uniquely identified $^\Lambda\text{H}^3$ and the resulting histogram is shown in Fig. 1 (b). Figure 1 (c) gives the Q-value histogram obtained by using 65 uniquely charge identified $^\Lambda\text{H}$ hypernuclei. The dashed line histograms of Fig. 1 were obtained by procedure A.

It is clear from Fig. 1 that $^\Lambda\text{He}^{5\ast}$ ($I = 2$) hypernucleus does not show up as a detectable resonance in the $^\Lambda\text{H}^4-p$ rest system for Q-values ranging from 0 to 24 MeV. The departure of the Q-distributions from their corresponding backgrounds is negligible and can be attributed to statistical fluctuations.

$^\Lambda\text{Li}^6$-hypernucleus.—This unstable hypernucleus may appear as a resonance in the Q-value distribution of $^\Lambda\text{He}^5 + p$ rest system. The 195 uniquely identified $^\Lambda\text{He}^5$ events have been used to obtain the Q-distribution which is given in Fig. 2 (a). The Q-distribution as per procedure B was obtained by using 62 uniquely identified $^\Lambda\text{He}^4$ events and is given in Fig. 2 (b). Figure 2 (c) represents the Q-distribution for 306 uniquely charge identified $^\Lambda\text{He}$ events. The dashed line histograms of Fig. 2 represent background Q-distributions obtained by procedure A.

From the results presented in Fig. 2, it is evident that the Q-value histograms do not show prominence at small Q-values ($\leqslant 1$ MeV) as compared with background distributions. Within the experimental limitations the data is consistent with no evidence for the production of $^\Lambda\text{Li}^6$ as a resonant state in the $^\Lambda\text{He}^5 + p$ rest system; by considering the Q-distribution between 0-2 MeV an upper limit of 20% may be placed for the number of observed $^\Lambda\text{He}^5$ hypernuclei which are produced from a resonant state of $^\Lambda\text{He}^5 + p$.

$^\Lambda\text{Be}^{9\ast}$ ($I = 1$) hypernucleus.—We have made an attempt to look for this hypernucleus as a resonance at Q ~ 12 MeV in the $^\Lambda\text{He}^5 + \text{He}^4$ rest system. The Q-value histograms using uniquely identified $^\Lambda\text{He}^5$, $^\Lambda\text{He}^4$ and those $^\Lambda\text{He}$ events where only charge could be inferred well are shown in Figs. 3 (a), (b) and (c) respectively; the dashed line histograms represent Q-distributions according to procedure A.

From these histograms it can be said that there is no statistically significant peak in the Q-values (Fig. 3) at ~ 12 MeV. The data presented in Fig. 3 is consistent with no production of $^\Lambda\text{Be}^{9\ast}$ ($I = 1$), as a resonant state in the $^\Lambda\text{He}^5-\text{He}^4$ rest system, within experimental limitations; the distribution of Q-values between 11-13 MeV sets an upper limit of 15% on the number of observed $^\Lambda\text{He}^5$ hypernuclei resulting from a resonant state of $^\Lambda\text{He}^5 + \text{He}^4$.
4. Conclusions

The analysis of the data presented in this paper is consistent with the absence of $^{\Lambda}\text{He}^6*$ ($I = 2$), $^{\Lambda}\text{Li}^6$ and $^{\Lambda}\text{Be}^9*$ ($I = 1$) hypernuclei, as resonant states, in interactions of stopping negative K-mesons with emulsion nuclei and sets an upper limit of 20% and 15% for the proportion of $^{\Lambda}\text{He}^5$ hypernuclei resulting from $^{\Lambda}\text{Li}^6$ and $^{\Lambda}\text{Be}^9*$ respectively.

5. Acknowledgement

We are extremely grateful to Professor R. R. Daniel and Dr. P. K. Malhotra for helpful discussions. The Chandigarh group is grateful to the C.S.I.R. for financial assistance.

6. References

5. ___________ *Proceed. Int. Conf. on Hyperfragments, St. Cergue Page, 1963, p. 201,*
On the Hypernuclei Resonant States $^{\Lambda}Li^6$, $^{\Lambda}He^5*$ and $^{\Lambda}Be^9*$

